CHEMISTRY: ATOMS FIRST VOL 1 W/CONNECT
CHEMISTRY: ATOMS FIRST VOL 1 W/CONNECT
14th Edition
ISBN: 9781259327933
Author: Burdge
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 18, Problem 18.48QP

(a)

Interpretation Introduction

Interpretation:

Need to calculate the dollars needed for the production of 10 tons of aluminum, 30 tons of sodium and 50 tons of calcium.

Concept introduction:

The reduction reaction for the production of aluminum, sodium and calcium was given below

Mg2++2e-MgAl3+ +3e-AlNa+ +e- NaCa2+ +2e- Ca

Even though the above reaction shows the production of different metal but all of them involve the reduction by electrons. The quantity of the metal produced is directly proportional to the quantity of the electrons utilized. So the production cost of the metal depends on the number of moles of electron need.

(a)

Expert Solution
Check Mark

Answer to Problem 18.48QP

Number of tons of metal produced by one mole of electron was calculated as follows Since the production cost of magnesium was given, the number of tons of magnesium produced by one mole of electrons was calculated first.

For Magnesium

Mg2++2e-Mg

1moleMg2molee-×24.31gMg1moleMg×1ton9.072×105g=1.3298×10-5tonMg/molee-

For Aluminum:

Al3++3e-Al

1moleAl3molee-×27gAl1moleAl×1ton9.072×105g=9.9206×10-6tonofAl/molee-

Since the production cost of one tone of magnesium was given as 155 dollars it was taken as reference for calculation,

Cost of production for Al3+=155 dollars1tonMg×1.3298 ×10-5tonMg1molee-×1molee-9.9206 ×10-6tonAl×10tonsAl = 2.0777×103dollars

Explanation of Solution

For Magnesium

Mg2++2e-Mg

1moleMg2molee-×24.31gMg1moleMg×1ton9.072×105g=1.3298×10-5tonMg/molee-

For Aluminum:

Al3++3e-Al

1moleAl3molee-×27gAl1moleAl×1ton9.072×105g=9.9206×10-6tonofAl/molee-

Since the production cost of one tone of magnesium was given as 155 dollars it was taken as reference for calculation,

Cost of production for Al3+=155 dollars1tonMg×1.3298 ×10-5tonMg1molee-×1molee-9.9206 ×10-6tonAl×10tonsAl = 2.0777×103dollars

(b)

Interpretation Introduction

Interpretation:

Need to calculate the dollars needed for the production of 10 tons of aluminum, 30 tons of sodium and 50 tons of calcium.

Concept introduction:

The reduction reaction for the production of aluminum, sodium and calcium was given below

Mg2++2e-MgAl3+ +3e-AlNa+ +e- NaCa2+ +2e- Ca

Even though the above reaction shows the production of different metal but all of them involve the reduction by electrons. The quantity of the metal produced is directly proportional to the quantity of the electrons utilized. So the production cost of the metal depends on the number of moles of electron need.

(b)

Expert Solution
Check Mark

Answer to Problem 18.48QP

Number of tons of metal produced by one mole of electron was calculated as follows Since the production cost of magnesium was given, the number of tons of magnesium produced by one mole of electrons was calculated first.

For Magnesium

Mg2++2e-Mg

1moleMg2molee-×24.31gMg1moleMg×1ton9.072×105g=1.3298×10-5tonMg/molee-

For Sodium:

Na++e-Na

1moleNa1molee-×23gNa1moleNa×1ton9.072×105g=2.5353×10-5tonNa/molee-

Cost of production for Na3+=155 dollars1tonMg×1.3298 ×10-5tonMg1molee-×1molee-2.5353×10-6tonNa×30tonsNa =2.44×103dollars

Explanation of Solution

For Sodium:

Na++e-Na

1moleNa1molee-×23gNa1moleNa×1ton9.072×105g=2.5353×10-5tonNa/molee-

Cost of production for Na3+=155 dollars1tonMg×1.3298 ×10-5tonMg1molee-×1molee-2.5353×10-6tonNa×30tonsNa =2.44×103dollars

(c)

Interpretation Introduction

Interpretation:

Need to calculate the dollars needed for the production of 10 tons of aluminum, 30 tons of sodium and 50 tons of calcium.

Concept introduction:

The reduction reaction for the production of aluminum, sodium and calcium was given below

Mg2++2e-MgAl3+ +3e-AlNa+ +e- NaCa2+ +2e- Ca

Even though the above reaction shows the production of different metal but all of them involve the reduction by electrons. The quantity of the metal produced is directly proportional to the quantity of the electrons utilized. So the production cost of the metal depends on the number of moles of electron need.

(c)

Expert Solution
Check Mark

Answer to Problem 18.48QP

Number of tons of metal produced by one mole of electron was calculated as follows Since the production cost of magnesium was given, the number of tons of magnesium produced by one mole of electrons was calculated first.

For Magnesium

Mg2++2e-Mg

1moleMg2molee-×24.31gMg1moleMg×1ton9.072×105g=1.3298×10-5tonMg/molee-

For Calcium:

Ca2++2e-Ca

1moleCa2molee-×40g Ca1moleCa×1ton9.072×105g=2.2046×10-5tonCa/molee-

Cost of production for Ca2+=155 dollars1tonMg×1.3298 ×10-5tonMg1molee-×1molee-2.2046 ×10-5tonCa×50tonsCa =4.675×103 dollars

Explanation of Solution

For Calcium:

Ca2++2e-Ca

1moleCa2molee-×40g Ca1moleCa×1ton9.072×105g=2.2046×10-5tonCa/molee-

Cost of production for Ca2+=155 dollars1tonMg×1.3298 ×10-5tonMg1molee-×1molee-2.2046 ×10-5tonCa×50tonsCa =4.675×103 dollars

The quantity of the metal produced is directly proportional to the quantity of the electrons. So the production cost of the metal depends on the number of moles of electron need. Number of tons of metal produce by one mole of electron was calculated first, from this the cost of production of 10 tons of aluminum, 30 tons of sodium and 50 tons of calcium were calculated as 2.0777×103dollars , 2.44×103dollars and 4.675×103 dollars respectively.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 18 Solutions

CHEMISTRY: ATOMS FIRST VOL 1 W/CONNECT

Ch. 18.3 - Prob. 18.3WECh. 18.3 - Prob. 3PPACh. 18.3 - Prob. 3PPBCh. 18.3 - Prob. 3PPCCh. 18.3 - Prob. 18.3.1SRCh. 18.3 - Prob. 18.3.2SRCh. 18.3 - Prob. 18.3.3SRCh. 18.3 - Prob. 18.3.4SRCh. 18.4 - Prob. 18.4WECh. 18.4 - Prob. 4PPACh. 18.4 - Prob. 4PPBCh. 18.4 - Prob. 4PPCCh. 18.4 - Prob. 18.5WECh. 18.4 - Prob. 5PPACh. 18.4 - Prob. 5PPBCh. 18.4 - Prob. 5PPCCh. 18.4 - Prob. 18.4.1SRCh. 18.4 - Prob. 18.4.2SRCh. 18.5 - Prob. 18.6WECh. 18.5 - Prob. 6PPACh. 18.5 - Prob. 6PPBCh. 18.5 - Prob. 6PPCCh. 18.5 - Prob. 18.7WECh. 18.5 - Prob. 7PPACh. 18.5 - Prob. 7PPBCh. 18.5 - Prob. 7PPCCh. 18.5 - Prob. 18.5.1SRCh. 18.5 - Prob. 18.5.2SRCh. 18.5 - Prob. 18.5.3SRCh. 18.5 - Prob. 18.5.4SRCh. 18.7 - Prob. 18.8WECh. 18.7 - Prob. 8PPACh. 18.7 - Prob. 8PPBCh. 18.7 - Prob. 8PPCCh. 18.7 - Prob. 18.7.1SRCh. 18.7 - Prob. 18.7.2SRCh. 18.7 - Prob. 18.7.3SRCh. 18 - Balance the following redox equations by the...Ch. 18 - Balance the following redox equations by the...Ch. 18 - In the first scene of the animation, when a zinc...Ch. 18 - What causes the change in the potential of the...Ch. 18 - Why does the color of the blue solution in the...Ch. 18 - Prob. 18.4VCCh. 18 - Define the following terms: anode, cathode, cell...Ch. 18 - Prob. 18.4QPCh. 18 - Prob. 18.5QPCh. 18 - What is a cell diagram? Write the cell diagram for...Ch. 18 - What is the difference between the half-reactions...Ch. 18 - Discuss the spontaneity of an electrochemical...Ch. 18 - Prob. 18.9QPCh. 18 - Prob. 18.10QPCh. 18 - Calculate the standard emf of a cell that uses...Ch. 18 - Prob. 18.12QPCh. 18 - Prob. 18.13QPCh. 18 - Consider the following half-reactions....Ch. 18 - Predict whether NO3 ions will oxidize Mn2+ to MnO4...Ch. 18 - Prob. 18.16QPCh. 18 - Prob. 18.17QPCh. 18 - Prob. 18.18QPCh. 18 - Prob. 18.19QPCh. 18 - Use the information m Table 2.1, and calculate the...Ch. 18 - Prob. 18.21QPCh. 18 - Prob. 18.22QPCh. 18 - Use the standard reduction potentials to find the...Ch. 18 - Calculate G and Kc for the following reactions at...Ch. 18 - Under standard state conditions, what spontaneous...Ch. 18 - Prob. 18.26QPCh. 18 - Balance (in acidic medium) the equation for the...Ch. 18 - Prob. 18.28QPCh. 18 - Prob. 18.29QPCh. 18 - Write the Nernst equation for the following...Ch. 18 - What is the potential of a cell made up of Zn/Zn2+...Ch. 18 - Calculate E, E, and G for the following cell...Ch. 18 - Calculate the standard potential of the cell...Ch. 18 - What is the emf of a cell consisting of a Pb2+/Pb...Ch. 18 - Prob. 18.35QPCh. 18 - Calculate the emf of the following concentration...Ch. 18 - What is a battery? Describe several types of...Ch. 18 - Explain the differences between a primary galvanic...Ch. 18 - Discuss the advantages and disadvantages of fuel...Ch. 18 - The hydrogen-oxygen fuel cell is described in...Ch. 18 - Calculate the standard emf of the propane fuel...Ch. 18 - What is the difference between a galvanic cell...Ch. 18 - Prob. 18.43QPCh. 18 - Calculate the number of grams of copper metal that...Ch. 18 - Prob. 18.45QPCh. 18 - Consider the electrolysis of molten barium...Ch. 18 - Prob. 18.47QPCh. 18 - Prob. 18.48QPCh. 18 - Prob. 18.49QPCh. 18 - How many faradays of electricity are required to...Ch. 18 - Calculate the amounts of Cu and Br2 produced in...Ch. 18 - Prob. 18.52QPCh. 18 - Prob. 18.53QPCh. 18 - A constant electric current flows for 3.75 h...Ch. 18 - What is the hourly production rate of chlorine gas...Ch. 18 - Chromium plating is applied by electrolysis to...Ch. 18 - The passage of a current of 0.750 A for 25.0 min...Ch. 18 - A quantity of 0.300 g of copper was deposited from...Ch. 18 - In a certain electrolysis experiment, 1.44 g of Ag...Ch. 18 - Prob. 18.60QPCh. 18 - Prob. 18.61QPCh. 18 - Prob. 18.62QPCh. 18 - Tarnished silver contains Ag2S. The tarnish can be...Ch. 18 - Prob. 18.64QPCh. 18 - For each of the following redox reactions, (i)...Ch. 18 - Prob. 18.66QPCh. 18 - Prob. 18.67QPCh. 18 - Prob. 18.68QPCh. 18 - Prob. 18.69QPCh. 18 - Prob. 18.70QPCh. 18 - Prob. 18.71QPCh. 18 - Prob. 18.72QPCh. 18 - Prob. 18.73QPCh. 18 - Prob. 18.74QPCh. 18 - A galvanic cell consists of a silver electrode in...Ch. 18 - Explain why chlorine gas can be prepared by...Ch. 18 - Prob. 18.77QPCh. 18 - Prob. 18.78QPCh. 18 - Prob. 18.79QPCh. 18 - Prob. 18.80QPCh. 18 - Prob. 18.81QPCh. 18 - Prob. 18.82QPCh. 18 - An acidified solution was electrolyzed using...Ch. 18 - Prob. 18.84QPCh. 18 - Consider the oxidation of ammonia....Ch. 18 - Prob. 18.86QPCh. 18 - Prob. 18.87QPCh. 18 - Prob. 18.88QPCh. 18 - Prob. 18.89QPCh. 18 - Prob. 18.90QPCh. 18 - Prob. 18.91QPCh. 18 - Prob. 18.92QPCh. 18 - An aqueous solution of a platinum salt is...Ch. 18 - Prob. 18.94QPCh. 18 - Prob. 18.95QPCh. 18 - Prob. 18.96QPCh. 18 - Prob. 18.97QPCh. 18 - A silver rod and a SHE are dipped into a saturated...Ch. 18 - Prob. 18.99QPCh. 18 - Prob. 18.100QPCh. 18 - The magnitudes (but not the signs) of the standard...Ch. 18 - Prob. 18.102QPCh. 18 - Given the standard reduction potential for Au3+ in...Ch. 18 - Prob. 18.104QPCh. 18 - Prob. 18.105QPCh. 18 - Prob. 18.106QPCh. 18 - Prob. 18.107QPCh. 18 - Prob. 18.108QPCh. 18 - Prob. 18.109QPCh. 18 - Prob. 18.110QPCh. 18 - Prob. 18.111QPCh. 18 - In recent years there has been much interest in...Ch. 18 - Prob. 18.113QPCh. 18 - Prob. 18.114QPCh. 18 - Prob. 18.115QPCh. 18 - Prob. 18.116QPCh. 18 - Prob. 18.117QPCh. 18 - A galvanic cell using Mg/Mg2+ and Cu/Cu2+...Ch. 18 - Prob. 18.119QPCh. 18 - Prob. 18.120QPCh. 18 - Lead storage batteries arc rated by ampere-hours,...Ch. 18 - Use Equations 14.10 and 18.3 to calculate the emf...Ch. 18 - Prob. 18.123QPCh. 18 - A 9.00 102 mL amount of 0.200 M MgI2 solution was...Ch. 18 - Prob. 18.125QPCh. 18 - Which of the components of dental amalgam...Ch. 18 - Calculate the equilibrium constant for the...Ch. 18 - Prob. 18.128QPCh. 18 - Prob. 18.129QPCh. 18 - Prob. 18.130QPCh. 18 - Prob. 18.131QPCh. 18 - Prob. 18.1KSPCh. 18 - Prob. 18.2KSPCh. 18 - Prob. 18.3KSPCh. 18 - Prob. 18.4KSP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Electrolysis; Author: Tyler DeWitt;https://www.youtube.com/watch?v=dRtSjJCKkIo;License: Standard YouTube License, CC-BY