Chemistry & Chemical Reactivity
Chemistry & Chemical Reactivity
9th Edition
ISBN: 9781133949640
Author: John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher: Cengage Learning
bartleby

Videos

Textbook Question
Book Icon
Chapter 18, Problem 1PS

Which substance has the higher entropy?

  1. (a) dry ice (solid CO2) at −78 °C or CO2(g) at 0 °C
  2. (b) liquid water at 25 °C or liquid water at 50 °C
  3. (c) pure alumina, Al2O3(s), or ruby (ruby is Al2O3 in which some Al3+ ions in the crystalline lattice are replaced with Cr3+ ions)
  4. (d) one mole of N2(g) at 1 bar pressure or one mole of N2(g) at 10 bar pressure (both at 298 K)

(a)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation: From the given substances that is dry ice at -78oC or CO2 at 0oC the substance with higher entropy should be identified.

Concept introduction: Entropy is a measure of the randomness of the system. It is a thermodynamic quantity and an extensive property. It is represented by the symbol S. It can also be defined as the degree of energy dispersal. More the dispersal in energy, more value of entropy.

Answer to Problem 1PS

The substance which has the highest entropy is CO2(g) at °C.

Explanation of Solution

Entropy increases in the order solid < liquid < gas.  In the gaseous state, the particles are more random. In solids, the particles have fixed positions and entropy is less. In liquids, there are constraints due to forces between the particles.

Hence, entropy is more for CO2(g) at °C than for solid CO2 at -78 °C since CO2(g) is in gaseous state.

(b)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation: From the given substances that is liquid water at 25oC or liquid water at 50oC the substance with higher entropy should be identified.

Concept introduction: Entropy is a measure of the randomness of the system. It is a thermodynamic quantity and an extensive property. It is represented by the symbol S. It can also be defined as the degree of energy dispersal. More the dispersal in energy, more value of entropy.

Answer to Problem 1PS

The substance which has the highest entropy is liquid water at 50 °C.

Explanation of Solution

The entropy of a substance increase when the temperature is increased. At higher temperature, the substance is more disordered and thus the entropy is high. Also, when the temperature raised the additional energy added in the form of heat.

Therefore, liquid water has higher entropy at 50 °C than at 25 °C.

(c)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation: From the given substances that is pure alumina and ruby the substance with higher entropy should be identified.

Concept introduction: Entropy is a measure of the randomness of the system. It is a thermodynamic quantity and an extensive property. It is represented by the symbol S. It can also be defined as the degree of energy dispersal. More the dispersal in energy, more value of entropy.

Answer to Problem 1PS

The substance which has the highest entropy is Ruby.

Explanation of Solution

Al2O3 is pure alumina. The entropy of a pure crystal is zero. Ruby is Al2O3 doped with chromium ions. Some of the Al3+ ions are replaced by Cr3+ due to which the disorderness of the crystal increases and the entropy increases.

Thus, entropy is more for ruby than for pure Al2O3.

(d)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation: From the given substances that is 1molofN2(g)at1bar or 1molofN2(g)at10bar the substance with higher entropy should be identified.

Concept introduction: Entropy is a measure of the randomness of the system. It is a thermodynamic quantity and an extensive property. It is represented by the symbol S. It can also be defined as the degree of energy dispersal. More the dispersal in energy, more value of entropy.

Answer to Problem 1PS

The substance which has the highest entropy is N2(g) at 1 bar pressure.

Explanation of Solution

The entropy of the system increase when the pressure is decreased. At high pressure, the substance is more ordered and the randomness is less. Thus, the entropy is less.

Thus, N2(g) at 1 bar pressure has more entropy than N2(g) at 10 bar pressure.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 18 Solutions

Chemistry & Chemical Reactivity

Ch. 18.4 - Without looking up their standard entropies in...Ch. 18.4 - Without doing any calculations, predict the sign...Ch. 18.4 - Calculate rS for the following reaction at 25 C....Ch. 18.5 - Based on rH and rS, predict the spontaneity of the...Ch. 18.5 - Prob. 1RCCh. 18.5 - Prob. 2RCCh. 18.5 - Prob. 3RCCh. 18.6 - Prob. 1RCCh. 18.6 - Prob. 2RCCh. 18.7 - Prob. 1CYUCh. 18.7 - Prob. 2CYUCh. 18.7 - Oxygen was first prepared by Joseph Priestley...Ch. 18.7 - Prob. 4CYUCh. 18.7 - Prob. 5CYUCh. 18.7 - Prob. 6CYUCh. 18.7 - Prob. 1RCCh. 18.7 - Prob. 2RCCh. 18.7 - Prob. 3RCCh. 18.7 - Consider the hydrolysis reactions of creatine...Ch. 18.7 - Prob. 2QCh. 18.A - The decomposition of diamond to graphite...Ch. 18.A - It has been demonstrated that buckminsterfullerene...Ch. 18 - Which substance has the higher entropy? (a) dry...Ch. 18 - Which substance has the higher entropy? (a) a...Ch. 18 - Use S values to calculate the standard entropy...Ch. 18 - Use S values to calculate the standard entropy...Ch. 18 - Calculate the standard entropy change for the...Ch. 18 - Calculate the standard entropy change for the...Ch. 18 - Calculate the standard entropy change for the...Ch. 18 - Calculate the standard entropy change for the...Ch. 18 - Is the reaction Si(s) + 2 Cl2(g) SiCl4(g)...Ch. 18 - Is the reaction Si(s) + 2 H2(g) SiH4(g)...Ch. 18 - Calculate S(universe) for the decomposition of 1...Ch. 18 - Calculate S(universe) for the formation of 1 mol...Ch. 18 - Classify each of the reactions according to one of...Ch. 18 - Classify each of the reactions according to one of...Ch. 18 - Using values of fH and S, calculate rG for each of...Ch. 18 - Using values of fH and S, calculate rG for each of...Ch. 18 - Using values of fH and S, calculate the standard...Ch. 18 - Using values of fH and S, calculate the standard...Ch. 18 - Using values of fG, calculate rG for each of the...Ch. 18 - Using values of fG, calculate rG for each of the...Ch. 18 - For the reaction BaCO3(s) BaO(s) + CO2(g), rG =...Ch. 18 - For the reaction TiCl2(s) + Cl2(g) TiCl4(), rG =...Ch. 18 - Determine whether the reactions listed below are...Ch. 18 - Determine whether the reactions listed below are...Ch. 18 - Heating some metal carbonates, among them...Ch. 18 - Calculate rH and rS for the reaction of tin(IV)...Ch. 18 - The standard free energy change, rG, for the...Ch. 18 - Prob. 28PSCh. 18 - Calculate rG at 25 C for the formation of 1.00 mol...Ch. 18 - Prob. 30PSCh. 18 - Prob. 31PSCh. 18 - Prob. 32PSCh. 18 - Compare the compounds in each set below and decide...Ch. 18 - Using standard entropy values, calculate rS for...Ch. 18 - About 5 billion kilograms of benzene, C6H6, are...Ch. 18 - Hydrogenation, the addition of hydrogen to an...Ch. 18 - Is the combustion of ethane, C2H6, product-favored...Ch. 18 - Prob. 38GQCh. 18 - When vapors from hydrochloric acid and aqueous...Ch. 18 - Calculate S(system), S(surroundings), and...Ch. 18 - Methanol is now widely used as a fuel in race...Ch. 18 - The enthalpy of vaporization of liquid diethyl...Ch. 18 - Calculate the entropy change, rS, for the...Ch. 18 - Using thermodynamic data, estimate the normal...Ch. 18 - Prob. 45GQCh. 18 - When calcium carbonate is heated strongly, CO2 gas...Ch. 18 - Sodium reacts violently with water according to...Ch. 18 - Yeast can produce ethanol by the fermentation of...Ch. 18 - Elemental boron, in the form of thin fibers, can...Ch. 18 - Prob. 50GQCh. 18 - Prob. 51GQCh. 18 - Estimate the boiling point of water in Denver,...Ch. 18 - The equilibrium constant for the butane ...Ch. 18 - A crucial reaction for the production of synthetic...Ch. 18 - Calculate rG for the decomposition of sulfur...Ch. 18 - Prob. 56GQCh. 18 - A cave in Mexico was recently discovered to have...Ch. 18 - Wet limestone is used to scrub SO2 gas from the...Ch. 18 - Sulfur undergoes a phase transition between 80 and...Ch. 18 - Calculate the entropy change for dissolving HCl...Ch. 18 - Some metal oxides can be decomposed to the metal...Ch. 18 - Prob. 62ILCh. 18 - Prob. 63ILCh. 18 - Prob. 64ILCh. 18 - Titanium(IV) oxide is converted to titanium...Ch. 18 - Cisplatin [cis-diamminedichloroplatinum(II)] is a...Ch. 18 - Prob. 67SCQCh. 18 - Explain why each of the following statements is...Ch. 18 - Decide whether each of the following statements is...Ch. 18 - Under what conditions is the entropy of a pure...Ch. 18 - Prob. 71SCQCh. 18 - Consider the formation of NO(g) from its elements....Ch. 18 - Prob. 73SCQCh. 18 - The normal melting point of benzene, C6H6, is 5.5...Ch. 18 - Prob. 75SCQCh. 18 - For each of the following processes, predict the...Ch. 18 - Heater Meals are food packages that contain their...Ch. 18 - Prob. 78SCQCh. 18 - Prob. 79SCQCh. 18 - Prob. 80SCQCh. 18 - Iodine, I2, dissolves readily in carbon...Ch. 18 - Prob. 82SCQCh. 18 - Prob. 83SCQCh. 18 - Prob. 84SCQCh. 18 - Prob. 85SCQCh. 18 - Prob. 86SCQCh. 18 - The Haber-Bosch process for the production of...Ch. 18 - Prob. 88SCQ
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781285199023
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY