
Concept explainers
A teacher would like to demonstrate the behavior of continental and oceanic crust floating in the mantle by using wood blocks and a pan of water. What density of wood is required to model how the continental crust floats in the mantle? What density of wood is required to model the oceanic crust?

The density of wood required to model the continental crust and oceanic crust floating in mantle.
Answer to Problem 8PEB
Solution:
Explanation of Solution
Given Data:
The density of continental crust is
The density of mantle is
The density of oceanic crust is
The density of water is
Formulae used:
Density of the wood required to represent the continental crust.
Here,
Density of the wood required to represent the ocean crust.
Here,
Explanation:
The expression of density of the wood required to represent the continental crust is:
Substituting
Hence, for modeling of the continental crust in the mantle, the density of wood required is
The density of the wood required to represent the ocean crust is:
Substituting
Hence for the modeling of the continental crust in mantle the density of wood required is
Conclusion:
The continental crust and oceanic crust floating in mantle can be represented by density of wood
Want to see more full solutions like this?
Chapter 18 Solutions
Physical Science
Additional Science Textbook Solutions
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
College Physics: A Strategic Approach (3rd Edition)
Fundamentals of Physics Extended
General, Organic, and Biological Chemistry - 4th edition
Biology: Life on Earth with Physiology (11th Edition)
Cosmic Perspective Fundamentals
- Answer the assignment 1 question and show step-by-step solution. This is from Chapter 8 from the book, "The Essential Cosmic Perspective" 8th edition by Bennett, Donahue, Schneider, Voit. I provided some helpful notes to help with the solution.arrow_forwardAnswer the assignment 2 question and show step-by-step solution. This is from Chapter 8 from the book, "The Essential Cosmic Perspective" 8th edition by Bennett, Donahue, Schneider, Voit. I provided some helpful notes to help with the solution.arrow_forwardAnswer the assignment 1 question and show step-by-step solution. This is from Chapter 7 from the book, "The Essential Cosmic Perspective" 8th edition by Bennett, Donahue, Schneider, Voit. I provided some helpful notes to help with the solution.arrow_forward
- Answer the assignment 2 question and show step-by-step solution. This is from Chapter 7 from the book, "The Essential Cosmic Perspective" 8th edition by Bennett, Donahue, Schneider, Voit. I provided some helpful notes to help with the solution.arrow_forwardA cyclic process for an ideal gas is shown. The cycle has three stages: isovolumetric, adiabatic. and isothermal. Work is done on the gas during the isothermal stage. Pressure Stage Z Stage Y Which stage is isothermal and what is the direction of the cyclic process? Stage Direction A B C D A. Y B. Z C. Y N Anti-clockwise Anti-clockwise Clockwise Clockwise Volumearrow_forwardI need help with this matching question from an Astronomy assignment. Please provide me with the correct answers and explain it to me.arrow_forward
- Answer the assignment 2 question and show step-by-step solution. This is from Chapter 6 from the book, "The Essential Cosmic Perspective" 8th edition by Bennett, Donahue, Schneider, Voit. I provided some helpful notes to help with the solution.arrow_forwardAnswer the assignment 1 question and show step-by-step solution. This is from Chapter 6 from the book, "The Essential Cosmic Perspective" 8th edition by Bennett, Donahue, Schneider, Voit. I provided some helpful notes to help with the solution.arrow_forwardPls help ASAP on botharrow_forward
- Question 16 A square plate has a side length of 1.20m. A 24.0- N'm torque is applied about an axis perpendicular to the plate through its centre. If it experiences an angular acceleration of 6.25rad/s², calculate the mass of the plate. Question 17 A light string is wrapped around a solid cylinder, and a block of mass m = 100g hangs from the free end of the string, as shown Figure A2.17. When released, the block falls a distance of 1.0m in 2.0s. a. Draw free-body (or force) diagrams for the block and the cylinder. b. Calculate the tension in the string. c. Determine the mass (M) of the cylinder.arrow_forwardPls help ASAP on botharrow_forwardPls help ASAP on botharrow_forward
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning





