BuyFindarrow_forward

Chemistry & Chemical Reactivity

10th Edition
John C. Kotz + 3 others
ISBN: 9781337399074

Solutions

Chapter
Section
BuyFindarrow_forward

Chemistry & Chemical Reactivity

10th Edition
John C. Kotz + 3 others
ISBN: 9781337399074
Textbook Problem

Copper(I) ion disproportionates to copper metal and copper(ll) ion. (See Study Question 99.)

2 Cu+(aq) ⇄ Cu(s) + Cu2 + (aq)

  1. (a) What two half-reactions make up the disproportionation reaction?
  2. (b) Use values of the standard reduction potentials for the two half-reactions in part (a) to determine whether this disproportionation reaction is product-favored at equilibrium.
  3. (c) What is the equilibrium constant for this reaction? If you have a solution that initially contains 0.10 mol of Cu+ in 1.0 L of water, what are the concentrations of Cu+ and Cu2+ at equilibrium?

(a)

Interpretation Introduction

Interpretation:

The two half reactions which make up the disproportination reaction has to be determined.

Concept introduction:

Voltaic cell or Galvanic cell:

The device to produce electricity by using chemical reactions. In these divces are redox chemical reactions are occured.

A voltaic cell converts chemical energy into electrical energy.

It consists of two half cells. Each half cell consists of a metal and a solution of a salt of metal. Two half cells are connected by salt bridge.

The chemical reaction in the half cell is an oxidation reduction (redox)reactions.

For example:

Cell diagram of voltaic or galvanic cell is as follows.

                 Salt bridge                        Cu(s)|Cu2+(aq)  ||  Ag+(aq)|Ag(s)____________     ___________                                       Half cell             Half cell

Explanation

From the given information, Copper (I) ion dispropionates to copper metal and Copper (II) ion.

The given reaction is as follows:

2Cu2+(aq)Cu(s) + Cu2+(aq)

The half reactions are as follows

(b)

Interpretation Introduction

Interpretation:

It has to be identified whether the disproportination reaction is a product-favored at equilibrium or not using the standard reduction potentials.

Concept introduction:

Voltaic cell or Galvanic cell:

The device to produce electricity by using chemical reactions. In these divces are redox chemical reactions are occured.

A voltaic cell converts chemical energy into electrical energy.

It consists of two half cells. Each half cell consists of a metal and a solution of a salt of metal. Two half cells are connected by salt bridge.

The chemical reaction in the half cell is an oxidation reduction (redox)reactions.

For example:

Cell diagram of voltaic or galvanic cell is as follows.

                 Salt bridge                        Cu(s)|Cu2+(aq)  ||  Ag+(aq)|Ag(s)____________     ___________                                       Half cell             Half cell

According to the first law of thermodynamics, the change in internal energy of a system is equal ti the heat added to the sysytem minus the work done by the system.

The equation is as follows.

ΔU = Q - WΔU = Change in internal energyQ = Heat added to the systemW=Work done by the system

In voltaic cell, the maximum cell potential is directly related to the free energy difference between the reactants and products in the cell.

(c)

Interpretation Introduction

Interpretation:

The equilbrium constant of the reaction has to be calculated if the solution initially contains 0.10molofCu+ in 1L of water.

Concept introduction:

Voltaic cell or Galvanic cell:

The device to produce electricity by using chemical reactions. In these divces are redox chemical reactions are occured.

A voltaic cell converts chemical energy into electrical energy.

It consists of two half cells. Each half cell consists of a metal and a solution of a salt of metal. Two half cells are connected by salt bridge.

The chemical reaction in the half cell is an oxidation reduction (redox)reactions.

For example:

Cell diagram of voltaic or galvanic cell is as follows.

                 Salt bridge                        Cu(s)|Cu2+(aq)  ||  Ag+(aq)|Ag(s)____________     ___________                                       Half cell             Half cell

According to the first law of thermodynamics, the change in internal energy of a system is equal ti the heat added to the sysytem minus the work done by the system.

The equation is as follows.

ΔU = Q - WΔU = Change in internal energyQ = Heat added to the systemW=Work done by the system

In voltaic cell, the maximum cell potential is directly related to the free energy difference between the reactants and products in the cell.

ΔG0= -nFE0n = Number of moles transferred per mole of reactant and productsF = Faradayconstant=96485C/mol  E0= Volts = Work(J)/Charge(C)

The relation between standard cell potential and equilibrium constant is as follows.

lnK = nE00.0257 at 298K

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 19 Solutions

Show all chapter solutions add
Sect-19.8 P-19.11CYUSect-19.9 P-1.1ACPSect-19.9 P-1.2ACPSect-19.9 P-1.3ACPSect-19.9 P-2.1ACPSect-19.9 P-2.2ACPSect-19.9 P-2.3ACPSect-19.9 P-2.4ACPSect-19.9 P-2.5ACPCh-19 P-1PSCh-19 P-2PSCh-19 P-3PSCh-19 P-4PSCh-19 P-5PSCh-19 P-6PSCh-19 P-7PSCh-19 P-8PSCh-19 P-9PSCh-19 P-10PSCh-19 P-11PSCh-19 P-12PSCh-19 P-13PSCh-19 P-14PSCh-19 P-15PSCh-19 P-16PSCh-19 P-17PSCh-19 P-18PSCh-19 P-19PSCh-19 P-20PSCh-19 P-21PSCh-19 P-22PSCh-19 P-23PSCh-19 P-24PSCh-19 P-25PSCh-19 P-26PSCh-19 P-27PSCh-19 P-28PSCh-19 P-29PSCh-19 P-30PSCh-19 P-31PSCh-19 P-32PSCh-19 P-33PSCh-19 P-34PSCh-19 P-35PSCh-19 P-36PSCh-19 P-37PSCh-19 P-38PSCh-19 P-39PSCh-19 P-40PSCh-19 P-41PSCh-19 P-42PSCh-19 P-43PSCh-19 P-44PSCh-19 P-45PSCh-19 P-46PSCh-19 P-47PSCh-19 P-48PSCh-19 P-49PSCh-19 P-50PSCh-19 P-51PSCh-19 P-52PSCh-19 P-53PSCh-19 P-54PSCh-19 P-55PSCh-19 P-56PSCh-19 P-57GQCh-19 P-58GQCh-19 P-59GQCh-19 P-60GQCh-19 P-61GQCh-19 P-62GQCh-19 P-63GQCh-19 P-64GQCh-19 P-65GQCh-19 P-66GQCh-19 P-67GQCh-19 P-68GQCh-19 P-69GQCh-19 P-70GQCh-19 P-71GQCh-19 P-72GQCh-19 P-73GQCh-19 P-74GQCh-19 P-75GQCh-19 P-76GQCh-19 P-77GQCh-19 P-78GQCh-19 P-79GQCh-19 P-80GQCh-19 P-81GQCh-19 P-82GQCh-19 P-83GQCh-19 P-84GQCh-19 P-85GQCh-19 P-86GQCh-19 P-87GQCh-19 P-88GQCh-19 P-89GQCh-19 P-90GQCh-19 P-91GQCh-19 P-92GQCh-19 P-93GQCh-19 P-94GQCh-19 P-95GQCh-19 P-96GQCh-19 P-97GQCh-19 P-98GQCh-19 P-99GQCh-19 P-100GQCh-19 P-101GQCh-19 P-102GQCh-19 P-103GQCh-19 P-104GQCh-19 P-105ILCh-19 P-106ILCh-19 P-107ILCh-19 P-108ILCh-19 P-109ILCh-19 P-110ILCh-19 P-111SCQCh-19 P-112SCQCh-19 P-113SCQCh-19 P-114SCQCh-19 P-115SCQ

Additional Science Solutions

Find more solutions based on key concepts

Show solutions add

Characterize gases, liquids, and solids in terms of compressibility and fluidity.

General Chemistry - Standalone book (MindTap Course List)

Commercial shakes and energy bars have proven to be the best protein sources to support weight-loss efforts. T ...

Nutrition: Concepts and Controversies - Standalone book (MindTap Course List)

What is the major difference in structure between chlorophyll and heme?

Introduction to General, Organic and Biochemistry

How can errors in the cell cycle lead to cancer in humans?

Human Heredity: Principles and Issues (MindTap Course List)

Explain why a child could need an IEP that includes nutrition services.

Nutrition Through the Life Cycle (MindTap Course List)

Some __________ can cause cancer in humans. a. viruses b. bacteria c. viroids d. a and b

Biology: The Unity and Diversity of Life (MindTap Course List)

Figure P35.8 shows a refracted light beam in linseed oil making an angle of = 20.0 with the normal line NN The...

Physics for Scientists and Engineers, Technology Update (No access codes included)