The human body must maintain its core temperature inside a rather narrow range around 37°C. Metabolic processes, notably muscular exertion, convert potential energy into internal energy deep in the interior. From the interior, energy must flow out to the skin or lungs to be expelled to the environment. During moderate exercise, an 80-kg man can metabolize food energy at the rate 300 kcal/h, do 60 kcal/h of mechanical work, and put out the remaining 240 kcal/h of energy by heat. Most of the energy is carriedfrom the body interior out to the skin by forced convection, whereby blood is warmed in the interior and then cooled at the skin, which is a few degrees cooler than the body core. Without blood flow, living tissue is a good thermal insulator, with thermal conductivity about 0.210 W/m · °C. Show that blood flow is essential to cool the man’s body by calculatingthe rate of energy conduction in kcal/h through the tissue layer under his skin. Assume that its area is 1.40 m2, its thickness is 2.50 cm, and it is maintained at 37.0°C on one side and at 34.0°C on the other side.

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter17: Energy In Thermal Processes: The First Law Of Thermodynamics
Section: Chapter Questions
Problem 60P
icon
Related questions
icon
Concept explainers
Question

The human body must maintain its core temperature inside a rather narrow range around 37°C. Metabolic processes, notably muscular exertion, convert potential energy into internal energy deep in the interior. From the interior, energy must flow out to the skin or lungs to be expelled to the environment. During moderate exercise, an 80-kg man can metabolize food energy at the rate 300 kcal/h, do 60 kcal/h of mechanical work, and put out the remaining 240 kcal/h of energy by heat. Most of the energy is carried
from the body interior out to the skin by forced convection, whereby blood is warmed in the interior and then cooled at the skin, which is a few degrees cooler than the body core. Without blood flow, living tissue is a good thermal insulator, with thermal conductivity about 0.210 W/m · °C. Show that blood flow is essential to cool the man’s body by calculating
the rate of energy conduction in kcal/h through the tissue layer under his skin. Assume that its area is 1.40 m2, its thickness is 2.50 cm, and it is maintained at 37.0°C on one side and at 34.0°C on the other side.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Latent heat and phase change
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
University Physics Volume 2
University Physics Volume 2
Physics
ISBN:
9781938168161
Author:
OpenStax
Publisher:
OpenStax