Chemistry & Chemical Reactivity
Chemistry & Chemical Reactivity
10th Edition
ISBN: 9781337399074
Author: John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Chapter 19, Problem 84GQ
Interpretation Introduction

Interpretation:

It has to be predicted whether the potential for the voltaic cell will be higher, lower or same as the standard potential and the verification of the prediction also has to be done.

Concept introduction:

According to the first law of thermodynamics, the change in internal energy of a system is equal ti the heat added to the sysytem minus the work done by the system.

The equation is as follows.

ΔU = Q - WΔU = Change in internal energyQ = Heat added to the systemW=Work done by the system

In voltaic cell, the maximum cell potential is directly related to the free energy difference between the reactants and products in the cell.

ΔG0= -nFE0n = Number of moles transferred per mole of reactant and productsF = Faradayconstant=96485C/mol  E0= Volts = Work(J)/Charge(C)

The relation between standard cell potential and equilibrium constant is as follows.

lnK = nE00.0257 at 298K

The relation between solubility product Ksp and equilibrium constant is as follows.

Ksp= e+lnK

Blurred answer

Chapter 19 Solutions

Chemistry & Chemical Reactivity

Ch. 19.8 - Prob. 19.11CYUCh. 19.9 - Prob. 1.1ACPCh. 19.9 - Prob. 1.2ACPCh. 19.9 - Prob. 1.3ACPCh. 19.9 - Prob. 2.1ACPCh. 19.9 - Use standard reduction potentials to determine...Ch. 19.9 - Prob. 2.3ACPCh. 19.9 - The overall reaction for the production of Cu(OH)2...Ch. 19.9 - Assume the following electrochemical cell...Ch. 19 - Write balanced equations for the following...Ch. 19 - Write balanced equations for the following...Ch. 19 - Balance the following redox equations. All occur...Ch. 19 - Balance the following redox equations. All occur...Ch. 19 - Balance the following redox equations. All occur...Ch. 19 - Prob. 6PSCh. 19 - A voltaic cell is constructed using the reaction...Ch. 19 - A voltaic cell is constructed using the reaction...Ch. 19 - The half-cells Fe2+(aq) | Fe(s) and O2(g) | H2O...Ch. 19 - The half cells Sn2+(aq) |Sn(s) and Cl2(g) |Cl(aq)...Ch. 19 - For each of the following electrochemical cells,...Ch. 19 - For each of the following electrochemical cells,...Ch. 19 - Use cell notation to depict an electrochemical...Ch. 19 - Use cell notation to depict an electrochemical...Ch. 19 - What are the similarities and differences between...Ch. 19 - What reactions occur when a lead storage battery...Ch. 19 - Calculate the value of E for each of the following...Ch. 19 - Calculate the value of E for each of the following...Ch. 19 - Balance each of the following unbalanced...Ch. 19 - Balance each of the following unbalanced...Ch. 19 - Consider the following half-reactions: (a) Based...Ch. 19 - Prob. 22PSCh. 19 - Which of the following elements is the best...Ch. 19 - Prob. 24PSCh. 19 - Which of the following ions is most easily...Ch. 19 - From the following list, identify the ions that...Ch. 19 - (a) Which halogen is most easily reduced in acidic...Ch. 19 - Prob. 28PSCh. 19 - Calculate the potential delivered by a voltaic...Ch. 19 - Calculate the potential developed by a voltaic...Ch. 19 - One half-cell in a voltaic cell is constructed...Ch. 19 - One half-cell in a voltaic cell is constructed...Ch. 19 - One half-cell in a voltaic cell is constructed...Ch. 19 - One half-cell in a voltaic cell is constructed...Ch. 19 - Calculate rG and the equilibrium constant for the...Ch. 19 - Prob. 36PSCh. 19 - Use standard reduction potentials (Appendix M) for...Ch. 19 - Use the standard reduction potentials (Appendix M)...Ch. 19 - Use the standard reduction potentials (Appendix M)...Ch. 19 - Use the standard reduction potentials (Appendix M)...Ch. 19 - Prob. 41PSCh. 19 - Prob. 42PSCh. 19 - Which product, O2 or F2, is more likely to form at...Ch. 19 - Which product, Ca or H2, is more likely to form at...Ch. 19 - An aqueous solution of KBr is placed in a beaker...Ch. 19 - An aqueous solution of Na2S is placed in a beaker...Ch. 19 - In the electrolysis of a solution containing...Ch. 19 - In the electrolysis of a solution containing...Ch. 19 - Electrolysis of a solution of CuSO4(aq) to give...Ch. 19 - Electrolysis of a solution of Zn(NO3)2(aq) to give...Ch. 19 - A voltaic cell can be built using the reaction...Ch. 19 - Assume the specifications of a Ni-Cd voltaic cell...Ch. 19 - Use E values to predict which of the following...Ch. 19 - Prob. 54PSCh. 19 - Prob. 55PSCh. 19 - Prob. 56PSCh. 19 - Prob. 57GQCh. 19 - Balance the following equations. (a) Zn(s) +...Ch. 19 - Magnesium metal is oxidized, and silver ions are...Ch. 19 - You want to set up a series of voltaic cells with...Ch. 19 - Prob. 61GQCh. 19 - Prob. 62GQCh. 19 - In the table of standard reduction potentials,...Ch. 19 - Prob. 64GQCh. 19 - Four voltaic cells are set up. In each, one...Ch. 19 - The following half-cells are available: (i)...Ch. 19 - Prob. 67GQCh. 19 - Prob. 68GQCh. 19 - A potential of 0.142 V is recorded (under standard...Ch. 19 - Prob. 70GQCh. 19 - The standard potential, E, for the reaction of...Ch. 19 - An electrolysis cell for aluminum production...Ch. 19 - Electrolysis of molten NaCl is done in cells...Ch. 19 - A current of 0.0100 A is passed through a solution...Ch. 19 - A current of 0.44 A is passed through a solution...Ch. 19 - Prob. 76GQCh. 19 - Prob. 77GQCh. 19 - Prob. 78GQCh. 19 - The products formed in the electrolysis of aqueous...Ch. 19 - Predict the products formed in the electrolysis of...Ch. 19 - Prob. 81GQCh. 19 - The metallurgy of aluminum involves electrolysis...Ch. 19 - Prob. 83GQCh. 19 - Prob. 84GQCh. 19 - Prob. 85GQCh. 19 - Prob. 86GQCh. 19 - Two Ag+(aq) | Ag(s) half-cells are constructed....Ch. 19 - Calculate equilibrium constants for the following...Ch. 19 - Prob. 89GQCh. 19 - Use the table of standard reduction potentials...Ch. 19 - Prob. 91GQCh. 19 - Prob. 92GQCh. 19 - Prob. 93GQCh. 19 - A voltaic cell is constructed in which one...Ch. 19 - An expensive but lighter alternative to the lead...Ch. 19 - The specifications for a lead storage battery...Ch. 19 - Manganese may play an important role in chemical...Ch. 19 - Prob. 98GQCh. 19 - Iron(II) ion undergoes a disproportionation...Ch. 19 - Copper(I) ion disproportionates to copper metal...Ch. 19 - Prob. 101GQCh. 19 - Prob. 102GQCh. 19 - Can either sodium or potassium metal be used as a...Ch. 19 - Galvanized steel pipes are used in the plumbing of...Ch. 19 - Consider an electrochemical cell based on the...Ch. 19 - Prob. 106ILCh. 19 - A silver coulometer (Study Question 106) was used...Ch. 19 - Four metals, A, B, C, and D, exhibit the following...Ch. 19 - Prob. 109ILCh. 19 - The amount of oxygen, O2, dissolved in a water...Ch. 19 - Prob. 111SCQCh. 19 - The free energy change for a reaction, rG, is the...Ch. 19 - Prob. 113SCQCh. 19 - (a) Is it easier to reduce water in acid or base?...Ch. 19 - Prob. 115SCQ
Knowledge Booster
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • At 298 K, the solubility product constant for PbC2O4 is 8.5 1010, and the standard reduction potential of the Pb2+(aq) to Pb(s) is 0.126 V. (a) Find the standard potential of the half-reaction PbC2O4(s)+2ePb(s)+C2O42(aq) (Hint: The desired half-reaction is the sum of the equations for the solubility product and the reduction of Pb2+. Find G for these two reactions and add them to find G for their sum. Convert the G to the potential of the desired half-reaction.) (b) Calculate the potential of the Pb/PbC2O4 electrode in a 0.025 M solution of Na2C2O4.
    A voltaic cell is constructed in which one half-cell consists of a silver wire in an aqueous solution of AgNO3.The other half cell consists of an inert platinum wire in an aqueous solution containing Fe2+(aq) and Fe3+(aq). (a) Calculate the cell potential, assuming standard conditions. (b) Write the net ionic equation for the reaction occurring in the cell. (c) Which electrode is the anode and which is the cathode? (d) If [Ag+] is 0.10 M, and [Fe2+] and [Fe3+] are both 1.0 M, what is the cell potential? Is the net cell reaction still that used in part (a)? If not, what is the net reaction under the new conditions?
    At 298 K, the solubility product constant for Pb(IO3)2 is 2.6 1013, and the standard reduction potential of the Pb2+(aq) to Pb(s) is 0.126 V. (a) Find the standard potential of the half-reaction Pb(IO3)2(s)+2ePb(s)+2IO3(aq) (Hint: The desired half-reaction is the sum of the equations for the solubility product and the reduction of Pb2+. Find G for these two reactions, and add them to find G for their sum. Convert the G to the potential of the desired half-reaction.) (b) Calculate the potential of the Pb/Pb(IO3)2 electrode in a 3.5 103 M solution of NaIO3.
    Recommended textbooks for you
  • Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781133949640
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Chemistry: Principles and Practice
    Chemistry
    ISBN:9780534420123
    Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
    Publisher:Cengage Learning
  • Chemistry: The Molecular Science
    Chemistry
    ISBN:9781285199047
    Author:John W. Moore, Conrad L. Stanitski
    Publisher:Cengage Learning
    General Chemistry - Standalone book (MindTap Cour...
    Chemistry
    ISBN:9781305580343
    Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
    Publisher:Cengage Learning
    Principles of Modern Chemistry
    Chemistry
    ISBN:9781305079113
    Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
    Publisher:Cengage Learning
  • Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781133949640
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Chemistry: Principles and Practice
    Chemistry
    ISBN:9780534420123
    Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
    Publisher:Cengage Learning
    Chemistry: The Molecular Science
    Chemistry
    ISBN:9781285199047
    Author:John W. Moore, Conrad L. Stanitski
    Publisher:Cengage Learning
    General Chemistry - Standalone book (MindTap Cour...
    Chemistry
    ISBN:9781305580343
    Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
    Publisher:Cengage Learning
    Principles of Modern Chemistry
    Chemistry
    ISBN:9781305079113
    Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
    Publisher:Cengage Learning
    Electrolysis; Author: Tyler DeWitt;https://www.youtube.com/watch?v=dRtSjJCKkIo;License: Standard YouTube License, CC-BY