Vector Mechanics for Engineers: Statics and Dynamics
Vector Mechanics for Engineers: Statics and Dynamics
12th Edition
ISBN: 9781259638091
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
bartleby

Concept explainers

Question
Book Icon
Chapter 19.5, Problem 19.127P

(a)

To determine

Show that in case of heavy damping (c>cc) a body never passes through its position of equilibrium O if it is released with no initial velocity from an arbitrary position.

(a)

Expert Solution
Check Mark

Explanation of Solution

Calculation:

Since (c>cc) which is over damped, the wavelength λ1 and λ2 is less than zero.

The expression for the differential equation of over damping as follows:

x=C1eλ1t+C2eλ2t (1)

Differentiate the above equation with respect to ‘t’.

v=dxdt=C1λ1eλ1t+C2λ2eλ2t (2)

Since the body is released with no initial velocity.

Substitute 0 for t, x0 for x and 0 for v in the equation (1).

x0=C1eλ1(0)+C2eλ2(0)x0=C1e0+C2e0x0=C1(1)+C2(1)x0=C1+C2C1=x0C2 (3)

Substitute 0 for t, x0 for x and 0 for v in the equation (2).

dxdt=C1λ1eλ1t+C2λ2eλ2t0=C1λ1eλ1(0)+C2λ2eλ2(0)0=C1λ1(1)+C2λ2(1)0=C1λ1+C2λ2

Substitute x0C2 for C1.

C1λ1+C2λ2=0(x0C2)λ1+C2λ2=0x0λ1C2λ1+C2λ2=0x0λ1C2(λ1λ2)=0x0λ1=C2(λ1λ2)C2(λ2λ1)=x0λ1C2=x0λ1(λ2λ1)

Substitute x0λ1(λ2λ1) for C2 in the equation (3).

C1=x0x0λ1(λ2λ1)=x0+x0λ1(λ2λ1)=x0(λ2λ1)+x0λ1λ2λ1=x0λ2x0λ1+x0λ1λ2λ1=x0λ2λ2λ1

Substitute x0λ1(λ2λ1) for C2 and x0λ2λ2λ1 for C1 in equation (1).

x=x0λ2λ2λ1eλ1tx0λ1(λ2λ1)eλ2t=x0λ2λ1[λ2eλ1tλ1eλ2t]

Apply boundary condition.

For x=0 when t.

0=x0λ2λ1[λ2eλ1tλ1eλ2t]λ2eλ1tλ1eλ2t=0λ2eλ1t=λ1eλ2tλ2λ1=eλ2teλ1tλ2λ1=eλ2teλ1tλ2λ1=eλ2tλ1t (4)

As λ1 and λ2 is less than zero. So, λ1<λ2<0 then 0<λ2λ1<1 and λ2λ1=0.

Thus the positive answer for the ‘t’ greater than 0 for the equation (4) cannot exist because the exponential (e) is increased to positive power be less than one which is not possible. Hence, the value of x is not becomes zero.

Show the graph of x versus t for the above solution as Figure (1).

Vector Mechanics for Engineers: Statics and Dynamics, Chapter 19.5, Problem 19.127P , additional homework tip  1

(b)

To determine

Show that in case of heavy damping (c>cc) a body never passes through its position of equilibrium O started from O with an arbitrary initial velocity.

(b)

Expert Solution
Check Mark

Explanation of Solution

Calculation:

Since the body is started from O with arbitrary initial velocity.

Substitute 0 for t, 0 for x and v0 for v in the equation (1).

0=C1eλ1(0)+C2eλ2(0)0=C1e0+C2e00=C1(1)+C2(1)0=C1+C2C1=C2 (5)

Substitute 0 for t, 0 for x, and v0 for v in the equation (2).

v=dxdt=C1λ1eλ1t+C2λ2eλ2tv0=C1λ1eλ1(0)+C2λ2eλ2(0)v0=C1λ1(1)+C2λ2(1)v0=C1λ1+C2λ2

Substitute C2 for C1.

C1λ1+C2λ2=v0(C2)λ1+C2λ2=v0C2λ1+C2λ2=v0C2(λ2+λ1)=v0C2(λ2λ1)=v0C2=v0λ2λ1

Substitute v0λ2λ1 for C2 in equation (5).

C1=v0λ2λ1

Substitute v0λ2λ1 for C2 and v0λ2λ1 for C1 in equation (1).

x=v0λ2λ1eλ1t+v0λ2λ1eλ2t=v0λ2λ1[eλ1t+eλ2t]=v0λ2λ1[eλ2teλ1t]

Apply boundary condition.

For x=0 when t>0.

0=v0λ2λ1[eλ2teλ1t]eλ2teλ1t=0eλ2t=eλ1t

For (c>cc), the wavelengths λ1λ2, thus no solution can exists for ‘t’ and x is not becomes zero when ‘t’ is greater than zero.

Show the graph of x versus t for the above solution as Figure (2).

Vector Mechanics for Engineers: Statics and Dynamics, Chapter 19.5, Problem 19.127P , additional homework tip  2

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Show that in the case of heavy damping (c>cc ), a body never passes through its position of equilibrium O if it is a (a) released with no initial velocity from an arbitrary position, (b) started from O with an arbitrary initial velocity.
A 30 kg object is undergoing lightly damped harmonic oscillations. If the maximum displacement of the object from its equilibrium point drops to 1/2 its orginal value 2.2 s, value of the damping constant b?
An sdof system consists of mass 175 kg and a spring constant k 530 kn/m while testing the system a relative velocity of 0.3 m was observed on application of force of 450 n determine the damping ratio

Chapter 19 Solutions

Vector Mechanics for Engineers: Statics and Dynamics

Ch. 19.1 - Prob. 19.11PCh. 19.1 - Prob. 19.12PCh. 19.1 - Prob. 19.13PCh. 19.1 - Prob. 19.14PCh. 19.1 - A 5-kg collar C is released from rest in the...Ch. 19.1 - Prob. 19.16PCh. 19.1 - Prob. 19.17PCh. 19.1 - An 11-lb block is attached to the lower end of a...Ch. 19.1 - Block A has a mass m and is supported by the...Ch. 19.1 - A 13.6-kg block is supported by the spring...Ch. 19.1 - Prob. 19.21PCh. 19.1 - 19.21 and 19.22A 50-kg block is supported by the...Ch. 19.1 - Prob. 19.23PCh. 19.1 - The period of vibration of the system shown is...Ch. 19.1 - Prob. 19.25PCh. 19.1 - Prob. 19.26PCh. 19.1 - From mechanics of materials, it is known that for...Ch. 19.1 - From mechanics of materials it is known that when...Ch. 19.1 - Prob. 19.29PCh. 19.1 - Prob. 19.30PCh. 19.1 - If h = 700 mm and d = 500 mm and each spring has a...Ch. 19.1 - Prob. 19.32PCh. 19.1 - Prob. 19.33PCh. 19.1 - Prob. 19.34PCh. 19.1 - Prob. 19.35PCh. 19.1 - Prob. 19.36PCh. 19.2 - The 9-kg uniform rod AB is attached to springs at...Ch. 19.2 - Prob. 19.38PCh. 19.2 - Prob. 19.39PCh. 19.2 - Prob. 19.40PCh. 19.2 - A 15-lb slender rod AB is riveted to a 12-lb...Ch. 19.2 - A 20-lb uniform cylinder can roll without sliding...Ch. 19.2 - A square plate of mass m is held by eight springs,...Ch. 19.2 - Prob. 19.44PCh. 19.2 - Prob. 19.45PCh. 19.2 - A three-blade wind turbine used for research is...Ch. 19.2 - A connecting rod is supported by a knife-edge at...Ch. 19.2 - A semicircular hole is cut in a uniform square...Ch. 19.2 - A uniform disk of radius r = 250 mm is attached at...Ch. 19.2 - A small collar of mass 1 kg is rigidly attached to...Ch. 19.2 - Prob. 19.51PCh. 19.2 - Prob. 19.52PCh. 19.2 - Prob. 19.53PCh. 19.2 - Prob. 19.54PCh. 19.2 - The 8-kg uniform bar AB is hinged at C and is...Ch. 19.2 - Prob. 19.56PCh. 19.2 - Prob. 19.57PCh. 19.2 - Prob. 19.58PCh. 19.2 - Prob. 19.59PCh. 19.2 - Prob. 19.60PCh. 19.2 - Two uniform rods, each of weight W = 24 lb and...Ch. 19.2 - A homogeneous rod of mass per unit length equal to...Ch. 19.2 - Prob. 19.63PCh. 19.2 - Prob. 19.64PCh. 19.2 - A 60-kg uniform circular plate is welded to two...Ch. 19.2 - Prob. 19.66PCh. 19.2 - Prob. 19.67PCh. 19.2 - The centroidal radius of gyration ky of an...Ch. 19.3 - Two blocks each have a mass 1.5 kg and are...Ch. 19.3 - Prob. 19.70PCh. 19.3 - Prob. 19.71PCh. 19.3 - Prob. 19.72PCh. 19.3 - Prob. 19.73PCh. 19.3 - Prob. 19.74PCh. 19.3 - Prob. 19.75PCh. 19.3 - Prob. 19.76PCh. 19.3 - Prob. 19.77PCh. 19.3 - Blade AB of the experimental wind-turbine...Ch. 19.3 - A 15-lb uniform cylinder can roll without sliding...Ch. 19.3 - Prob. 19.80PCh. 19.3 - Prob. 19.81PCh. 19.3 - Prob. 19.82PCh. 19.3 - Prob. 19.83PCh. 19.3 - Prob. 19.84PCh. 19.3 - A homogeneous rod of weight W and length 2l is...Ch. 19.3 - A 10-lb uniform rod CD is welded at C to a shaft...Ch. 19.3 - Prob. 19.87PCh. 19.3 - Prob. 19.88PCh. 19.3 - Prob. 19.89PCh. 19.3 - Prob. 19.90PCh. 19.3 - Prob. 19.91PCh. 19.3 - Prob. 19.92PCh. 19.3 - Prob. 19.93PCh. 19.3 - A uniform rod of length L is supported by a...Ch. 19.3 - Prob. 19.95PCh. 19.3 - Three collars each have a mass m and are connected...Ch. 19.3 - Prob. 19.97PCh. 19.3 - As a submerged body moves through a fluid, the...Ch. 19.4 - A 4-kg collar can slide on a frictionless...Ch. 19.4 - Prob. 19.100PCh. 19.4 - A collar with mass m that slides on a frictionless...Ch. 19.4 - Prob. 19.102PCh. 19.4 - The 1.2-kg bob of a simple pendulum of length l =...Ch. 19.4 - Prob. 19.104PCh. 19.4 - A precision experiment sits on an optical table...Ch. 19.4 - Prob. 19.106PCh. 19.4 - Prob. 19.107PCh. 19.4 - The crude-oil pumping rig shown is driven at 20...Ch. 19.4 - Prob. 19.109PCh. 19.4 - Prob. 19.110PCh. 19.4 - Prob. 19.111PCh. 19.4 - Rod AB is rigidly attached to the frame of a motor...Ch. 19.4 - Prob. 19.113PCh. 19.4 - Prob. 19.114PCh. 19.4 - A motor of weight 100 lb is supported by four...Ch. 19.4 - Prob. 19.116PCh. 19.4 - Prob. 19.117PCh. 19.4 - Prob. 19.118PCh. 19.4 - Prob. 19.119PCh. 19.4 - One of the tail rotor blades of a helicopter has...Ch. 19.4 - Prob. 19.121PCh. 19.4 - Prob. 19.122PCh. 19.4 - Prob. 19.123PCh. 19.4 - Prob. 19.124PCh. 19.4 - A 60-lb disk is attached with an eccentricity e =...Ch. 19.4 - A small trailer and its load have a total mass of...Ch. 19.5 - Prob. 19.127PCh. 19.5 - Prob. 19.128PCh. 19.5 - Prob. 19.129PCh. 19.5 - Prob. 19.130PCh. 19.5 - Prob. 19.131PCh. 19.5 - Prob. 19.132PCh. 19.5 - Prob. 19.133PCh. 19.5 - Prob. 19.134PCh. 19.5 - Prob. 19.135PCh. 19.5 - Prob. 19.136PCh. 19.5 - Prob. 19.137PCh. 19.5 - Prob. 19.138PCh. 19.5 - A machine element weighing 500 lb is supported by...Ch. 19.5 - Prob. 19.140PCh. 19.5 - Prob. 19.141PCh. 19.5 - Prob. 19.142PCh. 19.5 - Prob. 19.143PCh. 19.5 - A 36-lb motor is bolted to a light horizontal beam...Ch. 19.5 - One of the tail rotor blades of a helicopter has...Ch. 19.5 - Prob. 19.146PCh. 19.5 - Prob. 19.147PCh. 19.5 - Prob. 19.148PCh. 19.5 - Prob. 19.149PCh. 19.5 - Prob. 19.150PCh. 19.5 - The suspension of an automobile can be...Ch. 19.5 - Prob. 19.152PCh. 19.5 - Prob. 19.153PCh. 19.5 - Prob. 19.154PCh. 19.5 - 19.155 and 19.156 Draw the electrical analog of...Ch. 19.5 - Prob. 19.156PCh. 19.5 - 19.157 and 19.158Write the differential equations...Ch. 19.5 - 19.157 and 19.158Write the differential equations...Ch. 19 - An automobile wheel-and-tire assembly of total...Ch. 19 - Prob. 19.160RPCh. 19 - Disks A and B weigh 30 lb and 12 lb, respectively,...Ch. 19 - A small trailer and its load have a total mass of...Ch. 19 - A 0.8-lb ball is connected to a paddle by means of...Ch. 19 - Prob. 19.164RPCh. 19 - A 4-lb uniform rod is supported by a pin at O and...Ch. 19 - Prob. 19.166RPCh. 19 - Prob. 19.167RPCh. 19 - A small ball of mass m attached at the midpoint of...Ch. 19 - Prob. 19.169RPCh. 19 - If either a simple or a compound pendulum is used...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY