Modern Physics for Scientists and Engineers
Modern Physics for Scientists and Engineers
4th Edition
ISBN: 9781133103721
Author: Stephen T. Thornton, Andrew Rex
Publisher: Cengage Learning
bartleby

Videos

Textbook Question
Chapter 2, Problem 106P

Small differences in the wavelengths in the sun’s spectrum are detected when measurements are taken from different parts of the sun’s disk. Specifically, measurements of the 656-nm line in hydrogen taken from opposite sides on the sun’s equator—one side approaching Earth and the other receding—differ from each other by 0.0090 nm. Use this information to find the rotational period of the sun’s equator. Express your answer in days. (The sun’s equatorial radius is 6.96 × 108 m.)

Blurred answer
Students have asked these similar questions
Find the angle h for the sun in the following positions 1)the inclination of the sun d=-20° regardless of the effects of the atmosphere and the size of the sun? 2)the desire of the sun d=20° considering the effects of the atmosphere and the size of the sun?
Astronomical observations of our Milky Way galaxy indicate that it has a mass of about 8 ✕ 1011 solar masses. A star orbiting near the galaxy's periphery is 5.8 ✕ 104 light years from its center. (a) What should the orbital period (in y) of that star be?  y (b) If its period is 7.0 ✕ 107 y instead, what is the mass (in solar masses) of the galaxy? Such calculations are used to imply the existence of "dark matter" in the universe and have indicated, for example, the existence of very massive black holes at the centers of some galaxies.  solar masses
Astronomical observations of our Milky Way galaxy indicate that it has a mass of about 8 ✕ 1011 solar masses. A star orbiting near the galaxy's periphery is 6.0✕ 104 light years from its center. (a) What should the orbital period (in y) of that star be?  y (b) If its period is 5.1✕ 107 y instead, what is the mass (in solar masses) of the galaxy? Such calculations are used to imply the existence of "dark matter" in the universe and have indicated, for example, the existence of very massive black holes at the centers of some galaxies.  solar masses

Chapter 2 Solutions

Modern Physics for Scientists and Engineers

Ch. 2 - Can you think of an experiment to verify length...Ch. 2 - Would it be easier to perform the muon decay...Ch. 2 - On a spacetime diagram, can events above t = 0 but...Ch. 2 - Prob. 14QCh. 2 - What would be a suitable name for events connected...Ch. 2 - Prob. 16QCh. 2 - Prob. 17QCh. 2 - Explain how in the twin paradox, we might arrange...Ch. 2 - In each of the following pairs, which is the more...Ch. 2 - Prob. 20QCh. 2 - Prob. 21QCh. 2 - A salesman driving a very fast car was arrested...Ch. 2 - A salesman driving a very fast car was arrested...Ch. 2 - Show that the form of Newtons second law is...Ch. 2 - Prob. 2PCh. 2 - Prob. 3PCh. 2 - A swimmer wants to swim straight across a river...Ch. 2 - Prob. 5PCh. 2 - Prob. 6PCh. 2 - Prob. 7PCh. 2 - Prob. 8PCh. 2 - Prove that the constancy of the speed of light...Ch. 2 - Prob. 10PCh. 2 - Prob. 11PCh. 2 - Prob. 12PCh. 2 - Two events occur in an inertial system K as...Ch. 2 - Is there a frame K in which the two events...Ch. 2 - Prob. 15PCh. 2 - An event occurs in system K at x = 2 m, y = 3.5 m,...Ch. 2 - Prob. 17PCh. 2 - Prob. 18PCh. 2 - A rocket ship carrying passengers blasts off to go...Ch. 2 - Prob. 20PCh. 2 - Particle physicists use particle track detectors...Ch. 2 - The Apollo astronauts returned from the moon under...Ch. 2 - A clock in a spaceship is observed to run at a...Ch. 2 - A spaceship of length 40 m at rest is observed to...Ch. 2 - Prob. 25PCh. 2 - A mechanism on Earth used to shoot down...Ch. 2 - Prob. 27PCh. 2 - Imagine that in another universe the speed of...Ch. 2 - Prob. 29PCh. 2 - Prob. 30PCh. 2 - Prob. 31PCh. 2 - A proton and an antiproton are moving toward each...Ch. 2 - Imagine the speed of light in another universe to...Ch. 2 - Prob. 34PCh. 2 - Three galaxies are aligned along an axis in the...Ch. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Consider a reference system placed at the U.S....Ch. 2 - Prob. 39PCh. 2 - Prob. 40PCh. 2 - Use the Lorentz transformation to prove that s2 =...Ch. 2 - Prob. 42PCh. 2 - Prove that for a spacelike interval, two events...Ch. 2 - Given two events, (x1, t1) and (x2, t2), use a...Ch. 2 - Prob. 45PCh. 2 - Consider a fixed and a moving system with their...Ch. 2 - Prob. 47PCh. 2 - An astronaut is said to have tried to get out of a...Ch. 2 - Prob. 49PCh. 2 - Do the complete derivation for Equation (2.33)...Ch. 2 - A spacecraft traveling out of the solar system at...Ch. 2 - Prob. 52PCh. 2 - Prob. 53PCh. 2 - Prob. 54PCh. 2 - Newtons second law is given by F=dp/dt. If the...Ch. 2 - Use the result of the previous problem to show...Ch. 2 - Prob. 57PCh. 2 - Prob. 58PCh. 2 - A particle having a speed of 0.92c has a momentum...Ch. 2 - A particle initially has a speed of 0.5c. At what...Ch. 2 - Prob. 61PCh. 2 - Prob. 62PCh. 2 - Prob. 63PCh. 2 - Prob. 64PCh. 2 - Prob. 65PCh. 2 - Prob. 66PCh. 2 - Prob. 67PCh. 2 - Prob. 68PCh. 2 - Prob. 69PCh. 2 - Prob. 70PCh. 2 - What is the speed of an electron when its kinetic...Ch. 2 - Prob. 72PCh. 2 - Prob. 73PCh. 2 - Prob. 74PCh. 2 - Prob. 75PCh. 2 - Calculate the energy needed to accelerate a...Ch. 2 - Prob. 77PCh. 2 - Prob. 78PCh. 2 - Prob. 79PCh. 2 - Prob. 80PCh. 2 - The Large Hadron Collider at Europes CERN facility...Ch. 2 - What is the kinetic energy of (a) an electron...Ch. 2 - A muon has a mass of 106 MeV/c2. Calculate the...Ch. 2 - Prob. 84PCh. 2 - The reaction 2H + 3H → n + 4He is one of the...Ch. 2 - Instead of one positive charge outside a...Ch. 2 - Prob. 87PCh. 2 - Show that the following form of Newton’s second...Ch. 2 - Prob. 89PCh. 2 - For the twins Frank and Mary described in Section...Ch. 2 - Frank and Mary are twins. Mary jumps on a...Ch. 2 - A police radar gun operates at a frequency of 10.5...Ch. 2 - Prob. 93PCh. 2 - Prob. 94PCh. 2 - A proton moves with a speed of 0.90c. Find the...Ch. 2 - A high-speed K0 meson is traveling at a speed of...Ch. 2 - Prob. 97PCh. 2 - The International Space Federation constructs a...Ch. 2 - Prob. 99PCh. 2 - Prob. 100PCh. 2 - A spaceship is coming directly toward you while...Ch. 2 - Quasars are among the most distant objects in the...Ch. 2 - One possible decay mode of the neutral kaon is K0...Ch. 2 - Prob. 104PCh. 2 - Prob. 105PCh. 2 - Small differences in the wavelengths in the sun’s...
Knowledge Booster
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • How long should it take the voices of astronauts on the Moon to reach the Earth? Assume that the only significant time is the transit time from the Earth to the Moon, at the speed of light. Suppose that the astronaut on the surface of the Moon, the receiver on the surface of the Earth, and the centers of the Earth and the Moon are aligned. The distance between the centers of the Earth and the Moon is 384×103km, the radius of the Earth is 6.38×103km, the radius of the Moon is 1.74×103km.
    Calculate the effective gravitational field vector g at Earths surface at the poles and the equator. Take account of the difference in the equatorial (6378 km) and polar (6357 km) radius as well as the centrifugal force. How well does the result agree with the difference calculated with the result g = 9.780356[1 + 0.0052885 sin 2 0.0000059 sin2(2)]m/s2 where is the latitude?
    A spacecraft in the shape of a long cylinder has a length of 100 m, and its mass with occupants is 1 000 kg. Ii has strayed too close to a black hole having a mass 100 times that of the Sun (Fig. P11.11). The nose of the spacecraft points toward the black hole, and the distance between the nose and the center of the black hole is 10.0 km. (a) Determine the total force on the spacecraft. (b) What is the difference in the gravitational fields acting on the occupants in the nose of the ship and on those in the rear of the ship, farthest from the black hole? (This difference in accelerations grows rapidly as the ship approaches the black hole. It puts the body of the ship under extreme tension and eventually tears it apart.)
  • The Sun orbits the Milky Way galaxy once each 2.60108 years, with a roughly circular orbit averaging a radius of 3.00104 light-years. (A light-year is the distance traveled by light in 1 year.) Calculate the centripetal accleration of the Sun in its galactic orbit. Does yur result support the contention that a nearly inertial frame of reference can be located at the Sun? (b) Calculate the average speed of the Sun in its galactic orbit. Does the answer surprise you?
    You have been hired by the defense attorney as an expert witness in a lawsuit. The plaintiff is someone who just returned from being a passenger on the first orbital space tourist flight. Based on a travel brochure offered by the space travel company, the plaintiff expected to be able to see the Great Wall of China from his orbital height of 200 km above the Earth’s surface. He was unable to do so, and is now demanding that his fare be refunded and to receive additional financial compensation to cover his great disappointment. Construct the basis for an argument for the defense that shows that his expectation of seeing the Great Wall from orbit was unreasonable. The Wall is 7 m wide at its widest point and the normal visual acuity of the human eye is 3 x 10-4 rad. (Visual acuity is the smallestsubtended angle that an object can make at the eye and still be recognized; the subtended angle in radians is the ratio of the width of an object to the distance of the object from your eyes.)
    Our solar system is roughly 2.2 x 1020 m away from the center of the Milky Way galaxy, and the system is moving at roughly 231.4 km/s around the galaxy's center. Since most of the galaxy's mass is near its center (and we are on an outer arm of this spiral galaxy), let's model the galaxy has a spherical mass distribution (like a single, giant star that our system is orbiting around).  What is the mass of the galaxy (according to our rough, spherical model)? Obviously, this will be a VERY big answer, and so enter in your answer to the order of 1040 kg. In other words, calculate the answer, and then divide by 1040 and then enter in the result.  BTW - by assuming that all mass in the galaxy is made up of stars that are about the same mass as our sun, it isn't too hard to then estimate how many stars are in the galaxy!). As an another aside, some measurements and observations that we have taken in Astronomy suggests that in reality, stars only make up a fraction of the total mass
    • SEE MORE QUESTIONS
    Recommended textbooks for you
  • Principles of Physics: A Calculus-Based Text
    Physics
    ISBN:9781133104261
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    Classical Dynamics of Particles and Systems
    Physics
    ISBN:9780534408961
    Author:Stephen T. Thornton, Jerry B. Marion
    Publisher:Cengage Learning
    University Physics Volume 1
    Physics
    ISBN:9781938168277
    Author:William Moebs, Samuel J. Ling, Jeff Sanny
    Publisher:OpenStax - Rice University
  • Principles of Physics: A Calculus-Based Text
    Physics
    ISBN:9781133104261
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    Classical Dynamics of Particles and Systems
    Physics
    ISBN:9780534408961
    Author:Stephen T. Thornton, Jerry B. Marion
    Publisher:Cengage Learning
    University Physics Volume 1
    Physics
    ISBN:9781938168277
    Author:William Moebs, Samuel J. Ling, Jeff Sanny
    Publisher:OpenStax - Rice University
    Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY