
Electricity for Refrigeration, Heating, and Air Conditioning (MindTap Course List)
10th Edition
ISBN: 9781337399128
Author: Russell E. Smith
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
thumb_up100%
Chapter 2, Problem 1RQ
All physical objects are composed of __________.
- a. substances
- b. matter
- c. neutrons
- d. ketons
Expert Solution & Answer

To determine
All physical objects are composed of __________.
Explanation of Solution
Fundamental constituents that are named as elements are combined together to form a matter. The matter constituents are combined together to form a physical object. The physical object is may be wood, iron, cloth, solid, gas, and liquid. Hence, all physical components are made up of matter.
Thus, the correct answer is “option b. matter”.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Please solve this control system question a,b,c with a handwritten step-by-step explanation because I dont know how to solve this question I need an explanation. And don't use AI as before I submit this same question one guy used AI and I reported him, it is obvious. Thank you
Please solve this control system question a,b, with a handwritten step-by-step explanation because I dont know how to solve this question I need an explanation. And don't use AI as before I submit this same question one guy used AI and I reported him, it is obvious. Thank you
Please solve this control system question a,b, with a handwritten step-by-step explanation because I dont know how to solve this question I need an explanation. And don't use AI as before I submit this same question one guy used AI and I reported him, it is obvious. Thank you
Chapter 2 Solutions
Electricity for Refrigeration, Heating, and Air Conditioning (MindTap Course List)
Ch. 2 - All physical objects are composed of __________....Ch. 2 - What is an atom?Ch. 2 - Which of the following is a part of the atom? a....Ch. 2 - What is static electricity?Ch. 2 - Name three ways electricity can be produced.Ch. 2 - What part do protons and electrons play in the...Ch. 2 - Which of the following is the simplest atom that...Ch. 2 - What are the four most important characteristics...Ch. 2 - What is electromotive force?Ch. 2 - Electromotive force is commonly measured in _____....
Ch. 2 - What is current?Ch. 2 - How is current measured? a. amperes b. ohms c....Ch. 2 - What is resistance?Ch. 2 - How is resistance commonly measured? a. amperes b....Ch. 2 - What is electrical power?Ch. 2 - How is electrical power commonly measured? a....Ch. 2 - Where do electrons exist in an atom, and what is...Ch. 2 - True or False: All atoms tend to lose electrons.Ch. 2 - State the law of electric charges.Ch. 2 - What is a proton? Where does it normally exist in...Ch. 2 - Describe briefly the method a dry cell battery...Ch. 2 - What is a conductor?Ch. 2 - Which of the following is the best conductor? a....Ch. 2 - What is an insulator?Ch. 2 - Which of the following is the best insulator? a....Ch. 2 - Why do metals make the best conductors?Ch. 2 - How do electric utility companies charge customers...Ch. 2 - What is the meaning of SEER when used in...Ch. 2 - State Ohms law.Ch. 2 - True or False: Ohms law applies to all types of...Ch. 2 - What is the ampere draw of a 5000-watt electric...Ch. 2 - What is the resistance of the heating element of...Ch. 2 - What is the voltage of a small electric heater if...Ch. 2 - What is the Btu/hour output of an electric heater...Ch. 2 - What is the kilowatt output of an electric heater...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 3 0/10 points awarded Scored Consider steady flow of air through the diffuser portion of a wind tunnel. Along the centerline of the diffuser, the air speed decreases from entrance to exit as sketched. For the velocity field, calculate the fluid acceleration along the diffuser centerline as a function of x and the given parameters. For L = 1.56 m, entrance = 21.00 m/s, and exit = 17.5 m/s, calculate the acceleration at x = 0 and x = 1.0 m. Dexis Dentrance x=0 u(x) "exit "entrance x=L The acceleration at (x = 0) is -47 m/s². The acceleration at (x = 1.0 m) is 42.1 m/s. (Include a minus sign if necessary.)arrow_forwardO/10 5 points awarded Scored A bird is flying in a room with a velocity field of ▼ = (u, v, w) = (0.6xî + 0.2t j−1.4ĥ) m/s. The room is heated by a heat pump so that the temperature distribution at steady state is T(x, y, z) = (400–0.2(5x) 2-0.4y-0.6%) ˚C. Calculate the temperature change that the bird feels after 10.00 seconds of flight, as it flies through x = 1m. (Round the final answer to three decimal places.) The temperature change that the bird feels after 10.00 seconds of flight is 1.120 °C/s.arrow_forwardHot air at atmospheric pressure and 85°C enters a 10 m long un-insulated duct of cross section 0.15 m by 0.15 m that passes through the attic of a house at a rate of 0.1 m³/s. The duct surface is observed to be nearly isothermal at 70°C. Determine the exit temperature of the air and the rate of heat loss from the duct to the air space in the attic. Attic space Air 85°C 70°C 0.1 m²³½arrow_forward
- Please find attached picture.arrow_forward2. Consider a33m by 8 m wall 0.22 m thick, whose representative cross-section is given below. The thermal conductivities of the various materials used in W/m °C are KA-kF=2, ks=8, kc=20, kp=15 and kg-35. The left and right sides of the wall are maintained at uniform temperatures of 300°C and 100°C respectively. Assuming one-dimensional heat transfer determine, (a) the rate of heat transfer through the wall (b) the temperature at the point where the sections B, D and E meet and (c) the temperature drop across the section F. on 6cm Fig.Q2.Assignment Aarrow_forwardWater is heated from 12°C to 70°C as it flows through a 2 cm internal diameter, 7 m long tube. The tube is equipped with an electric resistance heater, which provides uniform heating throughout the surface of the tube. The outer surface of the heater is well insulated, so that in steady state operation all the heat generated in the water is transferred to the water in the tube. If the system is to provide hot water at a rate of 8 l/min, determine the power rating of the resistance heater. Also, estimate the inner surface temperature of the pipe at exit.arrow_forward
- The forming section of a plastics plant puts out a continuous sheet of plastic that is 3.2 m wide and 2 mm thick at a rate of 15 m/min. The temperature of the plastic sheet is 90°C when it is exposed to the surrounding air, and the sheet is subjected to airflow at 25°C at a velocity of 3 m/s on both sides along its surfaces normal to the direction of motion of the sheet. The width of the air-cooling section is such that a fixed point on the plastic sheet passes through that section in 2 s. Assume the density and Cp of the plastic sheet to be 56 kg/m³ and 1210 J/kgK. Determine the rate of heat transfer from the sheet to the air and the temperature of the plastic sheet at the end of the cooling section. Air 25°C mis go°c Plastic sheet 15m/minarrow_forwardA 2 mm diameter 10 m long electric wire is tightly wrapped with a 1mm thick plastic over whose thermal conductivity is k = 0.15 W/m. °C. Electrical measurements indicate that a current of 10 A passes through the wire and there is a voltage drop of 8 V along the wire. If the insulated wire is exposed to a medium at T = 30°C with a heat transfer coefficient of = 18 W/m². ºC, determine the temperature at the interface of the wire and the plastic cover in steady state operation. Also determine if doubling the thickness of the plastic cover will increase or decrease this interface temperature. O 7. = 30°C Electrical wire Insulation 10 marrow_forwardA house built on a riverside is to be cooled in summer by utilizing the cool water of the river, which flows at an average temperature of 15°C. A 15m long section of a circular air duct of 20 cm diameter passes through the water. Air enters the underwater section of the duct at 25 °C at a velocity of 3 m/s. Assuming the surface of the duct to be at the temperature of the water, determine the outlet temperature of the air duct. Also, determine the fan power needed to overcome the flow resistance in this section of the duct. Air 25°C, 3 m/s Assieme smooth duct surface Air River, 15ºC 15°C FIGURE P17-78arrow_forward
- 8. A system for heating water from an inlet temperature of T.; = 20°C to an out- = m, i let temperature of Tm, o 60°C involves passing the water through a thick- walled tube having inner and outer diameters of 20 and 40 mm. The outer sur- face of the tube is well insulated, and electrical heating within the wall provides for a uniform generation rate of ġ = 106 W/m³. = 0.1 kg/s, how long must the tube be to 1. For a water mass flow rate of m achieve the desired outlet temperature? 2. If the inner surface temperature of the tube is T is the local convection heat transfer coefficient at the outlet? = 70°C at the outlet, what D) Water D₁ = m= 0.1 kg/s = 40 mm D₁ = 20 mm Tm,i=20°C Inlet, i conv L -q= 106 W/m³ Outlet, o = 70°C m,o = 60°C Insulationarrow_forwardCalculate the deflection in the center of the beam and slope in support A using the overlapping methodarrow_forwardCalculate deflections and slopes at the free end by solving with the method of overlapping.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage LearningAutomotive Technology: A Systems Approach (MindTa...Mechanical EngineeringISBN:9781133612315Author:Jack Erjavec, Rob ThompsonPublisher:Cengage LearningWelding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning
- Precision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage LearningPrinciples of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage LearningUnderstanding Motor ControlsMechanical EngineeringISBN:9781337798686Author:Stephen L. HermanPublisher:Delmar Cengage Learning

Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning

Automotive Technology: A Systems Approach (MindTa...
Mechanical Engineering
ISBN:9781133612315
Author:Jack Erjavec, Rob Thompson
Publisher:Cengage Learning

Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning

Precision Machining Technology (MindTap Course Li...
Mechanical Engineering
ISBN:9781285444543
Author:Peter J. Hoffman, Eric S. Hopewell, Brian Janes
Publisher:Cengage Learning

Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning

Understanding Motor Controls
Mechanical Engineering
ISBN:9781337798686
Author:Stephen L. Herman
Publisher:Delmar Cengage Learning
Heat Transfer [Conduction, Convection, and Radiation]; Author: Mike Sammartano;https://www.youtube.com/watch?v=kNZi12OV9Xc;License: Standard youtube license