Fundamentals of Electromagnetics with Engineering Applications
Fundamentals of Electromagnetics with Engineering Applications
1st Edition
ISBN: 9780470105757
Author: Stuart M. Wentworth
Publisher: Wiley, John & Sons, Incorporated
bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 2.14P

A 20.0–cm–long section of copper pipe has a 1.00–cm–thick wall and outer diameter of 6.00 cm.

  1. Sketch the pipe, conveniently overlaying the cylindrical coordinate system and lining up the length direction with the z–axis.
  2. Determine the total surface area. (This could actually be useful if, say, you needed to do an electroplating step on this piece of pipe.)
  3. Determine the weight of the pipe given the density of copper of 8.96 g/cm3.
Blurred answer
Students have asked these similar questions
Please write to text format  The charge per unit length on the thin rod shown below is ?. What is the electric field at the point P? (Hint: Solve this problem by first considering the electric field dE at P due to a small segment dx of the rod, which contains charge dq = ? dx. Then find the net field by integrating dE over the length of the rod. Use the following as necessary: L, a, ?, and ?0. Enter the magnitude. Assume that ? is positive.)   E
A parallel plate capacitor of width W, length L, and separation d has a solid dielectric slab of permittivity ?(?) as shown in the figure. A potential difference ?? Volts is applied to the capacitor terminals. Neglecting fringing, fori. ?(?) = ?0ii. ?(?) = ?0??Determine;a) The electric field intensity ?⃗ ,b) The displacement vector ?⃗ ,c) The capacitance ?,d) The stored electrostatic energy ??e) Magnitude and the direction of the force acting on the slab ??⃗⃗⃗⃗
a long straight cylindrical wire of radius r meter, in a medium of permittivity e is parallel to a horizontal plane conducting sheet. The axis of the wire is it expr metres above the sheet (a) Derive an expression of the capacitance per unit length between the wire and the sheet (b) If r = 0.3 x 10-2 m, h.= 0.12 m find the capacitance per metre length (c) If the potential difference betweenthe wire and sheet is 5 kV, find the magnitude and direction of electric stress in the medium at theupper surface of the sheet at a distance 20 cm from the axis of the wire. Take e = 1/36π x 10-9 F/m [(a) C = 2πe/ln 2h - r/r  F/m (b) 0.0127 x 10-9 F/rn (c) 6.85 kV/m acting vertically downward]

Chapter 2 Solutions

Fundamentals of Electromagnetics with Engineering Applications

Ch. 2 - Prob. 2.11PCh. 2 - Prob. 2.12PCh. 2 - Prob. 2.13PCh. 2 - A 20.0–cm–long section of copper pipe has a...Ch. 2 - A line charge with charge density 2.00nC/m exists...Ch. 2 - You are given two z–directed line charges of...Ch. 2 - Suppose you have a segment of line charge of...Ch. 2 - A segment of line charge L=10.nC/m exists on the...Ch. 2 - In free space, there is a point charge Q=8.0nC at...Ch. 2 - Prob. 2.20PCh. 2 - Sketch the following surfaces and find the total...Ch. 2 - Consider a circular disk in the x–y plane of...Ch. 2 - Suppose a ribbon of charge with density S exists...Ch. 2 - Sketch the following volumes and find the total...Ch. 2 - You have a cylinder of 4.00–in diameter and...Ch. 2 - Consider a rectangular volume with...Ch. 2 - Prob. 2.27PCh. 2 - Prob. 2.28PCh. 2 - Given D=2a+sinazC/m2, find the electric flux...Ch. 2 - Suppose the electric flux density is given by...Ch. 2 - Prob. 2.31PCh. 2 - A cylindrical pipe with a 1.00–cm wall thickness...Ch. 2 - Prob. 2.34PCh. 2 - Prob. 2.35PCh. 2 - A thick–walled spherical shell, with inner...Ch. 2 - Prob. 2.37PCh. 2 - Determine the charge density at the point...Ch. 2 - Given D=3ax+2xyay+8x2y3azC/m2, (a) determine the...Ch. 2 - Suppose D=6cosaC/m2. (a) Determine the charge...Ch. 2 - Suppose D=r2sinar+sincosaC/m2. (a) Determine the...Ch. 2 - Prob. 2.42PCh. 2 - A surface is defined by the function 2x+4y21nz=12....Ch. 2 - For the following potential distributions, use the...Ch. 2 - A 100nC point charge is located at the origin. (a)...Ch. 2 - Prob. 2.46PCh. 2 - Prob. 2.47PCh. 2 - Prob. 2.48PCh. 2 - Suppose a 6.0–m–diameter ring with charge...Ch. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - The typical length of each piece of jumper wire on...Ch. 2 - A 150–m length of AWG–22 (0.644 mm diameter)...Ch. 2 - Determine an expression for the power dissipated...Ch. 2 - Find the resistance per unit length of a stainless...Ch. 2 - A nickel wire of diameter 5.0 mm is surrounded by...Ch. 2 - Prob. 2.57PCh. 2 - A 20nC point charge at the origin is embedded in...Ch. 2 - Suppose the force is very carefully measured...Ch. 2 - The potential field in a material with r=10.2 is...Ch. 2 - In a mineral oil dielectric, with breakdown...Ch. 2 - Prob. 2.62PCh. 2 - For z0,r1=9.0 and for z0,r2=4.0. If E1 makes a 300...Ch. 2 - Prob. 2.64PCh. 2 - Consider a dielectric–dielectric charge–free...Ch. 2 - A 1.0–cm–diameter conductor is sheathed with a...Ch. 2 - Prob. 2.67PCh. 2 - For a coaxial cable of inner conductor radius a...Ch. 2 - Prob. 2.69PCh. 2 - Prob. 2.70PCh. 2 - A parallel–plate capacitor with a 1.0m2 surface...Ch. 2 - Prob. 2.72PCh. 2 - Prob. 2.73PCh. 2 - Given E=5xyax+3zaZV/m, find the electrostatic...Ch. 2 - Suppose a coaxial capacitor with inner radius 1.0...
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Power System Analysis and Design (MindTap Course ...
Electrical Engineering
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:Cengage Learning
Routh Hurwitz Stability Criterion Basic Worked Example; Author: The Complete Guide to Everything;https://www.youtube.com/watch?v=CzzsR5FT-8U;License: Standard Youtube License