
Concept explainers
A length d of the charge lies on the Z-axis infree space. The charge density on the line is
where P0 is a possitive constant. (a) Find the electric field intensity E everywhere in the xy plane, expressing your result as a function of cylindrical radius p, (b) simplify your part a result for the case in radius pd, and express this result in terms of charge q=p0d/2.

(a)
The electric field intensity in x-y plane, as a function of cylindrical radius
Answer to Problem 2.17P
The required electric field intensity is:
Explanation of Solution
Given Information:
The line charge density is given as,
Calculation:
Let
So, the electric field intensity:
So, in cylindrical coordinates,
Conclusion:
The required electric field intensity is:

(b)
The electric field intensity in x-y plane for
Answer to Problem 2.17P
The required electric field intensity is,
Explanation of Solution
Given Information:
The line charge density is given as,
Calculation:
The electric field intensity,
Conclusion:
The required electric field intensity is,
Want to see more full solutions like this?
Chapter 2 Solutions
Engineering Electromagnetics
- 1016 1015 1014 1013 1012 13 1011 1010 601 (çuວ) uorງະuວວuo alueວ ວrsutu 10° 10' 106 is 105 002 300 400 2. Determine the equilibrium electron and hole concentrations inside a uniformly doped sample of Si under the following conditions. (n; =1010/cm³ at 300K) a) T 300 K, NA << ND, ND = 1015/cm³ b) T = 300 K, NA = 9X1015/cm³, ND = 1016/cm³ c) T = 450 K, NA = 0, ND = 1014/cm³ d) T = 650 K, NA = 0, ND = 1014/cm³ 3. For each of the conditions specified in problem 2, determine the position of Ei, computer EF-Ei, and draw a carefully dimensioned energy band diagram for the Si sample. (Note: EG(Si)=1.08eV at 450 K and 1.015eV at 650 K) 500 T(K) 009 700arrow_forwarda) A silicon wafer is uniformly doped p-type with NA=1015/cm³. At T=0K, what are the equilibrium hole and electron concentrations? b) A semiconductor is doped with an impurity concentration N such that N >> n; and all the impurities are ionized. Also, n = N and p = n;²/N. Is the impurity a donor or an acceptor? Explain. c) The electron concentration in a piece of Si maintained at 300K under equilibrium conditions is 105/cm³. What is the hole concentration? d) For a silicon sample maintained at T=300K, the Fermi level is located 0.259 eV above the intrinsic Fermi level. What are the hole and electron concentrations? e) In a nondegenerate germanium sample maintained under equilibrium conditions near room temperature, it is known that n=10¹³/cm³, n = 2p, and NA= 0. Determine n and ND.arrow_forwardWaveform: Triangle wave Frequency: 5000 Hz Duty Cycle: 40% Amplitude: 8 Vp On the oscilloscope, set the timebase to 100 μs/Div. Now run the simulation and measure the rise time and fall time of the triangle wave in V/100 μs. Are these values consistent with a 40% duty cycle? Look at the text instructions and images and tell me if my calculations seem right. change in voltage value was taken from the virtual oscilliscope. The change in voltage slope and convert to V/100us are what I am trying to ensure are correct. (Please don't just check that only duty cycle is correct. Please check if convert to V/100us is correct as well.)arrow_forward
- Waveform: Triangle wave Frequency: 5000 Hz Duty Cycle: 40% Amplitude: 8 Vp On the oscilloscope, set the timebase to 100 μs/Div. Now run the simulation and measure the rise time and fall time of the triangle wave in V/100 μs. Are these values consistent with a 40% duty cycle? I am trying to calculate V/100us. (T2−T1) rise=32.474uS (T2−T1) fall=47.755uS Minimum Voltage (V_min): 786.026 mV = 0.786026 V Maximum Voltage (V_max): 7.206 V Slope(rise) =6.419974/32.474×10^6 = 197,579.76,V/s *1,s/100,μs =197,579.76,V/100us I am checking the answer and I am concerned for V/100us =197,579.76,V/100us is to high? Please help me verify the answer for V/100us is correct. (I just need the calculations from my measurments) any insight is appreciated I did not post the pics of my virtual oscilliscope.arrow_forwardConnect the function generator and the scope, as shown in the same example. Set the function generator as follows: Waveform: Triangle wave Frequency: 5000 Hz Duty Cycle: 40% Amplitude: 8 Vp On the oscilloscope, set the timebase to 100 μs/Div. Now run the simulation and measure the rise time and fall time of the triangle wave in V/100 μs. Are these values consistent with a 40% duty cycle? How do I answer this question? what is V/100us?arrow_forwardhelp on this question about noise figure?arrow_forward
- A given FM broadcast receiver has an equivalent noise bandwidth of 200 kHz, a baseband bandwidth of 15 kHz, and a noise figure of 6 dB. What should be the received RF signal power so that the variable thermal noise is less than 60 dBm0, if the 800 Hz test signal and 0 dBm0 level produces a frequency deviation of 75 kHz?arrow_forwardplease redraw the equivalent circuit to make it look more realistic or correct anything that you see looking incorrect. this is the equivalent circuits for the transmission lines “Duhaney Park - WashingtonBoulevard” and “Washington Boulevard – Three Miles”.arrow_forwardAdd the following binary numbers: 1011 + 101, 1011 + 1101.arrow_forward
- Solve this problem to understand and to memorizedarrow_forwardFrom Bus To Bus Voltage (KV) MVA Limit R (pu) X (pu) B (pu) Hunts Bay A Three Miles 69 520 0.01335 0.04211 0.00640 Hunts Bay A Duhaney Park 69 410 0.05695 0.17388 0.01700 Hunts Bay A Rockfort 69 410 0.05811 0.17632 0.02460 Washington Blvd Duhaney Park 69 410 0.05403 0.22304 0.02190 WKHR Washington Blvd 69 410 0.06701 0.17103 0.01730 Hope WKHR 69 410 0.01938 0.05917 0.02640 Three Miles Washington Blvd 69 410 0.04699 0.19797 0.01870 Note: Reactance values are also used for zero-sequence reactance in later parts of the lab. From Bus To Bus Voltage (KV) MVA Limit X (pu) R (pu) Hunts Bay Gen 1 HBA 13.8/69 60 0.163482 0.010218 Hunts Bay Gen 2 HBA 13.8/69 60 0.163482 0.010218 Rockfort Gen Rockfort Load 13.8/69 60 0.163482 0.010218 12 MW 4Mvar 5MW 4Mvar sack 25 MW IME BMW 1.00 pu 1.00 pu Hunts Bay Gen 2 2 Mvar 19 MW 6 Mar Hunts Bay Gen 1 0.99 pu 0.98 p 0.97 pu Hunts Bay A Duhaney Park Washington Boulevard 14.0803 MW 121.1779 AMP 1.3500 Mer 55.9040 AMP 5.9414 MW 2,6002 Mar 12.8346 MW 15195 Ma…arrow_forwardSolve these 2 questions in detail to understand and memorizedarrow_forward
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage LearningDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage Learning
- EBK ELECTRICAL WIRING RESIDENTIALElectrical EngineeringISBN:9781337516549Author:SimmonsPublisher:CENGAGE LEARNING - CONSIGNMENTElectricity for Refrigeration, Heating, and Air C...Mechanical EngineeringISBN:9781337399128Author:Russell E. SmithPublisher:Cengage Learning




