Power System Analysis and Design (MindTap Course List)
Power System Analysis and Design (MindTap Course List)
6th Edition
ISBN: 9781305632134
Author: J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Chapter 2, Problem 2.17P

Consider a load impedance of Z = j w L connected to a voltage and V let the current drawn be I.

(a) Develop an expression for the reactive power Q in terms of ω , L , and I, from complex power considerations.

(b) Let the instantaneous current be i ( t ) = 2 I cos ( ω t + θ ) . Obtain an expression for the instantaneous power p ( t ) into L, and then express it in terms of Q.

(c) Comment on the average real power P supplied to the inductor and the instantaneous power supplied.

Blurred answer
Students have asked these similar questions
A transmission line delivers 1200MW at 500kV and 85% power factor. The series impedance of the line is 0.42 + j0.65 ohms/mi and the shunt impedance to.neutral is -j0.12 x 10^6 ohms-mi. What is the velocity propagation of the line. A. 560 × 10^6 km/hr B. 890 × 10^6 km/hr C. 750 × 10^6 km/hr D. 510 × 10^6 km/hr
Q5. A single phase overhead transmission line has a supply voltage of 34 kV and a sending end current of magnitude 40 A at 0-8 p.f. lagging is feeding a certain load. The total resistance and inductance of the line are 5 and 21 mH respectively. Draw the practical circuit used and the devices necessary to perform this experiment. Then calculate the sending end power, receiving end current, voltage, power factor, receiving end power and line efficiency Vs 34000 Is 40 Cosos 0.8 R 5 Ps Ir Vr Cosor Pr n 21e-3
A transmission line of impedance (0.05 + j0.02) pu interconnects the buses of a switchyard and a bulk supply point. The receiving end apparent power is (1.0 + j0.6) pu and sending end voltage, 1/0°pu. Estimate the following: i) Receiving end voltage after two iterations ii) Perform two further iterations to test the convergence of the value of receiving end voltage deduced in (i) iii) load current

Chapter 2 Solutions

Power System Analysis and Design (MindTap Course List)

Ch. 2 - The power factor for an inductive circuit (R-L...Ch. 2 - The power factor for a capacitive circuit (R-C...Ch. 2 - Prob. 2.13MCQCh. 2 - The instantaneous power absorbed by the load in a...Ch. 2 - Prob. 2.15MCQCh. 2 - With generator conyention, where the current...Ch. 2 - Consider the load convention that is used for the...Ch. 2 - Prob. 2.18MCQCh. 2 - The admittance of the impedance j12 is given by...Ch. 2 - Consider Figure 2.9 of the text, Let the nodal...Ch. 2 - The three-phase source line-to-neutral voltages...Ch. 2 - In a balanced three-phase Y-connected system with...Ch. 2 - In a balanced system, the phasor sum of the...Ch. 2 - Consider a three-phase Y-connected source feeding...Ch. 2 - For a balanced- load supplied by a balanced...Ch. 2 - A balanced -load can be converted to an...Ch. 2 - When working with balanced three-phase circuits,...Ch. 2 - The total instantaneous power delivered by a...Ch. 2 - The total instantaneous power absorbed by a...Ch. 2 - Under balanced operating conditions, consider the...Ch. 2 - One advantage of balanced three-phase systems over...Ch. 2 - While the instantaneous electric power delivered...Ch. 2 - Given the complex numbers A1=630 and A2=4+j5, (a)...Ch. 2 - Convert the following instantaneous currents to...Ch. 2 - The instantaneous voltage across a circuit element...Ch. 2 - For the single-phase circuit shown in Figure...Ch. 2 - A 60Hz, single-phase source with V=27730 volts is...Ch. 2 - (a) Transform v(t)=75cos(377t15) to phasor form....Ch. 2 - Let a 100V sinusoidal source be connected to a...Ch. 2 - Consider the circuit shown in Figure 2.23 in time...Ch. 2 - For the circuit shown in Figure 2.24, compute the...Ch. 2 - For the circuit element of Problem 2.3, calculate...Ch. 2 - Prob. 2.11PCh. 2 - The voltage v(t)=359.3cos(t)volts is applied to a...Ch. 2 - Prob. 2.13PCh. 2 - A single-phase source is applied to a...Ch. 2 - Let a voltage source v(t)=4cos(t+60) be connected...Ch. 2 - A single-phase, 120V(rms),60Hz source supplies...Ch. 2 - Consider a load impedance of Z=jwL connected to a...Ch. 2 - Let a series RLC network be connected to a source...Ch. 2 - Consider a single-phase load with an applied...Ch. 2 - A circuit consists of two impedances, Z1=2030 and...Ch. 2 - An industrial plant consisting primarily of...Ch. 2 - The real power delivered by a source to two...Ch. 2 - A single-phase source has a terminal voltage...Ch. 2 - A source supplies power to the following three...Ch. 2 - Consider the series RLC circuit of Problem 2.7 and...Ch. 2 - A small manufacturing plant is located 2 km down a...Ch. 2 - An industrial load consisting of a bank of...Ch. 2 - Three loads are connected in parallel across a...Ch. 2 - Prob. 2.29PCh. 2 - Figure 2.26 shows three loads connected in...Ch. 2 - Consider two interconnected voltage sources...Ch. 2 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - Prob. 2.38PCh. 2 - Prob. 2.39PCh. 2 - A balanced three-phase 240-V source supplies a...Ch. 2 - Prob. 2.41PCh. 2 - A balanced -connected impedance load with (12+j9)...Ch. 2 - A three-phase line, which has an impedance of...Ch. 2 - Two balanced three-phase loads that are connected...Ch. 2 - Two balanced Y-connected loads, one drawing 10 kW...Ch. 2 - Three identical impedances Z=3030 are connected in...Ch. 2 - Two three-phase generators supply a three-phase...Ch. 2 - Prob. 2.48PCh. 2 - Figure 2.33 gives the general -Y transformation....Ch. 2 - Consider the balanced three-phase system shown in...Ch. 2 - A three-phase line with an impedance of...Ch. 2 - A balanced three-phase load is connected to a...Ch. 2 - What is a microgrid?Ch. 2 - What are the benefits of microgrids?Ch. 2 - Prob. CCSQCh. 2 - Prob. DCSQ
Knowledge Booster
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • S1)  The serial impedance per unit length of a three-phase 140 km power transmission line is 0.09 + j0.88 ohm/ km and its admittance is j4.1x10-6 S / km. Power factor under 210 kV interphase voltage from the end of this energy transmission line A power of 150 MVA, which is 0.85 back, is drawn. Using this transmission line data and the T equivalent circuit model, the line Calculate the head voltage (V1), current (I1) and load angle.
    A three-phase system includes a 346.4 V line-to-line supplying a three-phase motor rated 15KVA 0.8pf lag plus additional balanced constant impedance loads. The single-phase representation of the system is shown below. Assume that sources and loads are Y-connected. 1. What is the RMS value of the line current, I in A? 2. If this set of loads will be supplied through a service transformer. What should the minimum size of the transformer in kVA? 3. What should be the size of three-phase capacitor(that will be added to the load mix) to improve power factor to almost 0.95 lag?
    A (medium) single phase transmission line 100 km long has the following constants : Resistance/km = 0·25 Ω ; Reactance/km = 0·8 Ω Susceptance/km = 14 × 10−6 siemens ; Receiving end line voltage = 66,000 V The line is delivering 15 000 kW at 0 8 power factor lagging.  Assuming that the total capacitance of the line is localised at the receiving end alone, determine the sending end current   Select one: a. 50 A b. 320 A c. 240 A d. None of The above
  • A HV transmission line having receiving end load is 300MVA, 50 Hz line from poin A to point B. Resistance  0.13 ohm/KM , for 160 KM Inductance XL= 0.4 ohm per kilometer Parallel admittance j318 × 10-6 Power Factor 0.8770, 0.8477 lagging, unity and 0.8770, 0.8477 leading Assume desired voltage at the receiving end of the transmission line is not less than 380kV., if the line is supplying rated voltage and apparent power at various power factors given Estimate : a. Sending end voltages b. Voltage regulation c. Efficiency of the transmission line d. Give a technical explanations on the results obtained
    A 3-phase, 50 Hz overhead transmission line, 100 km long, 110 kV between the lines at the receiving end has the following constants : Resistance per km per phase = 0·153 Ω Inductance per km per phase = 1·21 mH Capacitance per km per phase = 0·00958 μF The line supplies a load of 20,000 kW at 0·9 power factor lagging. Calculate using nominal π representation, the sending end voltage, current, power factor, regulation and the efficiency of the line
    S.2) The serial impedance of the 300 km power transmission line is 23 + j75 ohm / phase and the shunt acceptance is j500 microS / phase. A power of 50 MW with a power factor of 0.88 under 220 kV interphase voltage from the end of the power transmission line being shot. Using these data of the energy transmission line, a) Characteristic impedance of the energy transmission line, b) Natural apparent power of the energy transmission line according to the 220 kV interphase operating voltage, c) The values ​​of the line parameters A, B, C and D of the transmission line using hyperbolic functions, d) Calculate the maximum power that the power transmission line can transmit.
  • S.4) the length of a three-phase power transmission line with a Nominal operating voltage of 69 kV is 16km. The impedance of the transmission line per unit length is 0.125 + j0.4375 ohm/km. From the end of the line, a 56 MW star connected load is fed with a power coefficient of 0.8 back under a 64 kV interphase voltage. If the line head voltage of the transmission line is 69 kV, calculate the capacity and power of the star-connected capacitor to be shunted into the load connected to the end of the line.
    In the circuit below, a generator is connected to a load via a transmission line. Given that Rs = 10 Ω, Zline= (4 + j2) Ω, and Zload = (40 + j30) Ω: (a) Determine the power factor of the load, the power factor of the transmission line, and the power factor of the voltage source. (hint: pf can be calculated using the equation below, and θv, θi, θz are the phase angles of the voltage, current and the load impedance, respectively) (b) Specify the capacitance of a shunt capacitor C that would raise the power factor of the source to unity when connected between terminals (a, b). The source frequency is 60 Hz. (hint: increasing the source pf to unity requires that Zab = Zc || (Zline + Zload) be purely real.)
    a) You have been employed as an electrical engineer by a power transmission company to design a short transmission line to supply power to a light-industrial load consumer with power system specification as follows, a 3-ph, 60Hz overhead short transmission line with a line-to-line voltage of 23KV at the load end, line impedance of 2.48 ±j6.57Ω/phase, the industry has a cumulative consumption of 9MW with a power factor of 0.85 of lagging as a result of several induction motor on its production lines.As part of the regulations for connections to the grid, you are to provide justifications and values to the Energy Commission of Ghana.(i) What would be value of the voltage between the live conductor and the neutral, between live and live voltages at the industrial premises of the factory?(ii) What load angle would expect the factory to be operating at?
    • SEE MORE QUESTIONS
    Recommended textbooks for you
  • Introductory Circuit Analysis (13th Edition)
    Electrical Engineering
    ISBN:9780133923605
    Author:Robert L. Boylestad
    Publisher:PEARSON
    Delmar's Standard Textbook Of Electricity
    Electrical Engineering
    ISBN:9781337900348
    Author:Stephen L. Herman
    Publisher:Cengage Learning
    Programmable Logic Controllers
    Electrical Engineering
    ISBN:9780073373843
    Author:Frank D. Petruzella
    Publisher:McGraw-Hill Education
  • Fundamentals of Electric Circuits
    Electrical Engineering
    ISBN:9780078028229
    Author:Charles K Alexander, Matthew Sadiku
    Publisher:McGraw-Hill Education
    Electric Circuits. (11th Edition)
    Electrical Engineering
    ISBN:9780134746968
    Author:James W. Nilsson, Susan Riedel
    Publisher:PEARSON
    Engineering Electromagnetics
    Electrical Engineering
    ISBN:9780078028151
    Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
    Publisher:Mcgraw-hill Education,
  • Introductory Circuit Analysis (13th Edition)
    Electrical Engineering
    ISBN:9780133923605
    Author:Robert L. Boylestad
    Publisher:PEARSON
    Delmar's Standard Textbook Of Electricity
    Electrical Engineering
    ISBN:9781337900348
    Author:Stephen L. Herman
    Publisher:Cengage Learning
    Programmable Logic Controllers
    Electrical Engineering
    ISBN:9780073373843
    Author:Frank D. Petruzella
    Publisher:McGraw-Hill Education
    Fundamentals of Electric Circuits
    Electrical Engineering
    ISBN:9780078028229
    Author:Charles K Alexander, Matthew Sadiku
    Publisher:McGraw-Hill Education
    Electric Circuits. (11th Edition)
    Electrical Engineering
    ISBN:9780134746968
    Author:James W. Nilsson, Susan Riedel
    Publisher:PEARSON
    Engineering Electromagnetics
    Electrical Engineering
    ISBN:9780078028151
    Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
    Publisher:Mcgraw-hill Education,
    How do Electric Transmission Lines Work?; Author: Practical Engineering;https://www.youtube.com/watch?v=qjY31x0m3d8;License: Standard Youtube License