Fundamentals of Aerodynamics
Fundamentals of Aerodynamics
6th Edition
ISBN: 9781259129919
Author: John D. Anderson Jr.
Publisher: McGraw-Hill Education
bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 2.1P

Consider a body of arbitrary shape. If the pressure distribution over the surface of the body is constant, prove that the resultant pressure force on the body is zero. [Recall that this fact was used in Equation (2.77).]

Expert Solution & Answer
Check Mark
To determine

To prove:

The resultant force of the constant pressure on the arbitrary body is zero.

Explanation of Solution

Assume the following arbitrary shaped body.

Fundamentals of Aerodynamics, Chapter 2, Problem 2.1P

Consider an elemental area ds on the control surface, the pressure acting on the surface is given as Pds.

The net force acting on the body is given as follows:

F=sPdswhere Fands are the elemental surfaces.

The pressure distribution is given as the constant.

P=P

Substitute the value of constant pressure P=P.

F=sPdsF=Psds

The surface integral on any closed surface is always zero.

F=P×0F=0

Therefore, the pressure force acting the arbitrary body under constant pressure is zero.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Calculate the depth of the center of pressure for vertical rectangular plate having a height h = 10ft and base b = 5ft, and submerged in a liquid with its base at the liquid surface. If the upper base of the vertical rectangular plate given in the example problem is submerged by 12ft below the water surface, determine the location of the hydrostatic force and center of pressure. Answer should be (53,040 lbf and 17.4902ft)
Derive the expression for the hydrostatic force on a vertical plane surface?
A circular disc of radius R is immersed vertically in a liquid of density p. The top most point of the disc just touches the liquid surface. Determine the depth of center of pressure relative to the bottom of the disc (express your answer in terms of radius, R)

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY