Principles of Instrumental Analysis
Principles of Instrumental Analysis
7th Edition
ISBN: 9781305577213
Author: Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher: Cengage Learning
Question
Book Icon
Chapter 2, Problem 2.3QAP
Interpretation Introduction

(a)

Interpretation:

The relative error in the voltage reading if the internal resistance of the voltmeter was 4000 χ should be calculated.

Concept introduction:

The percentage relative loading error of the voltmeter Er = VM-VxVX×100%

VM = Voltage of the meter

VX = True voltage of the source

VM=VX(RMRM+RS)

When resistors are in series, a voltage divider. V = V1 + V2 + V3

The current in a series circuit is everywhere the same. In other words, I = I1 = I2 = I3

The total resistance Rs of a series circuit is equal to the sum of the resistances of the individual components. Rs = R1 + R2 + R3

Ohm’s law;

Ohm’s law describes the relationship among voltage, resistance, and current in a resistive series circuit.

V = IR

V = Voltage I = Current R = resistant

Interpretation Introduction

(b)

Interpretation:

The relative error in the voltage reading if the internal resistance of the voltmeter was 80.0 kχ should be calculated.

Concept introduction:

The percentage relative loading error of the voltmeter E r = VM-VxVX×100%

VM = Voltage of the meter

VX = True voltage of the source

VM=VX(RMRM+RS)

When resistors are in series, a voltage divider. V = V1 + V2 + V3

The current in a series circuit is everywhere the same. In other words, I = I1 = I2 = I3

The total resistance Rs of a series circuit is equal to the sum of the resistances of the individual components. Rs = R1 + R2 + R3

Ohm’s law;

Ohm’s law describes the relationship among voltage, resistance, and current in a resistive series circuit.

V = IR

V = Voltage I = Current R = resistant

Interpretation Introduction

(c)

Interpretation:

The relative error in the voltage reading if the internal resistance of the voltmeter was 1.00 Mχ should be calculated.

Concept introduction:

The percentage relative loading error of the voltmeter E r = VM-VxVX×100%

VM = Voltage of the meter

VX = True voltage of the source

VM=VX(RMRM+RS)

When resistors are in series, a voltage divider. V = V1 + V2 + V3

The current in a series circuit is everywhere the same. In other words, I = I1 = I2 = I3

The total resistance Rs of a series circuit is equal to the sum of the resistances of the individual components. Rs = R1 + R2 + R3

Ohm’s law;

Ohm’s law describes the relationship among voltage, resistance, and current in a resistive series circuit.

V = IR

V = Voltage I = Current R = resistant

Blurred answer
Students have asked these similar questions
If you wish to decrease the amount of current in a resistor from 240mA to 180mA by changing the 24V source, what should be the new voltage setting be?
The Weibull distribution is widely used in statistical problems relating to aging of solid insulating materials subjected to aging and stress. Use this distribution as a model for time (in hours) to failure of solid insulating specimens subjected to AC voltage. The values of the parameters depend on the voltage and temperature; suppose ? = 2.2 and ? = 220. (a) What is the probability that a specimen's lifetime is at most 250? Less than 250? More than 300? (Round your answers to five decimal places.) at most 250 less than 250more than 300 (b) What is the probability that a specimen's lifetime is between 100 and 250? (Round your answer to four decimal places.)   (c) What value (in hr) is such that exactly 50% of all specimens have lifetimes exceeding that value? (Round your answer to three decimal places.)  hr
The conductivity of a 0.100 moldm-3 KCl solution at 25oC is 1.289 Scm-1. What is the resistance and the conductance of the conductance cell for which the electrodes have an effective area of 2.0387 cm2 and are separated by a distance of 0.531 cm?
Knowledge Booster
Background pattern image
Similar questions
Recommended textbooks for you
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning