BuyFindarrow_forward

Organic And Biological Chemistry

7th Edition
STOKER + 1 other
ISBN: 9781305081079

Solutions

Chapter
Section
BuyFindarrow_forward

Organic And Biological Chemistry

7th Edition
STOKER + 1 other
ISBN: 9781305081079
Textbook Problem

How many constitutional isomers exist that fit each of the following specifications?

  1. a. Unbranched chain of five carbon atoms, one carbon–carbon double bond
  2. b. Unbranched chain of five carbon atoms, two carbon–carbon double bonds
  3. c. Five carbon atoms, one methyl group, one carbon–carbon double bond
  4. d. Five carbon atoms, two methyl groups, one carbon–carbon double bond

(a)

Interpretation Introduction

Interpretation:

The total number of constitutional isomers that is possible for a unbranched chain of five carbon atoms with a double bond has to be given.

Concept Introduction:

Organic compounds are represented shortly by the molecular formula and structural formula.  Each and every compound has its own molecular formula.  Compounds can have same molecular formula but not same structural formula.

Isomers are the compounds that have same molecular formula but different structural formula.  The main difference lies in the way the atoms are arranged in the structure.  Isomers have different chemical and physical properties even when they have same molecular formula.  This is known as Isomerism.

If there is difference only in the connectivity of the atoms in the molecule, then it is known as constitutional isomerism.  The isomers are known as constitutional isomers.  They will have same molecular formula and same functional group, but they differ in the connectivity between the atoms in the molecule.

In case of alkenes, two different constitutional isomers subtypes are possible.  They are skeletal isomers and positional isomers.

Skeletal isomers are a type of constitutional isomers which have different carbon‑atom arrangement and have the same functional group in them.

Positional isomers are a type of constitutional isomers which have same carbon‑atom arrangement and have difference in location of functional group in them.

Explanation

Alkenes exhibit constitutional isomerism.  The constitutional isomers of alkenes have two subtypes, namely skeletal constitutional isomers and positional constitutional isomers.

Skeletal isomers are a type of constitutional isomers which have different carbon‑atom arrangement and have the same functional group in them.

Positional isomers are a type of constitutional isomers which have same carbon‑atom arrangement and have difference in location of functional group in them...

(b)

Interpretation Introduction

Interpretation:

The total number of constitutional isomers that is possible for a unbranched chain of five carbon atoms with two double bonds has to be given.

Concept Introduction:

Organic compounds are represented shortly by the molecular formula and structural formula.  Each and every compound has its own molecular formula.  Compounds can have same molecular formula but not same structural formula.

Isomers are the compounds that have same molecular formula but different structural formula.  The main difference lies in the way the atoms are arranged in the structure.  Isomers have different chemical and physical properties even when they have same molecular formula.  This is known as Isomerism.

If there is difference only in the connectivity of the atoms in the molecule, then it is known as constitutional isomerism.  The isomers are known as constitutional isomers.  They will have same molecular formula and same functional group, but they differ in the connectivity between the atoms in the molecule.

In case of alkenes, two different constitutional isomers subtypes are possible.  They are skeletal isomers and positional isomers.

Skeletal isomers are a type of constitutional isomers which have different carbon‑atom arrangement and have the same functional group in them.

Positional isomers are a type of constitutional isomers which have same carbon‑atom arrangement and have difference in location of functional group in them.

(c)

Interpretation Introduction

Interpretation:

The total number of constitutional isomers that is possible for a compound with five carbon atoms in which a methyl group and a double bond is present has to be given.

Concept Introduction:

Organic compounds are represented shortly by the molecular formula and structural formula.  Each and every compound has its own molecular formula.  Compounds can have same molecular formula but not same structural formula.

Isomers are the compounds that have same molecular formula but different structural formula.  The main difference lies in the way the atoms are arranged in the structure.  Isomers have different chemical and physical properties even when they have same molecular formula.  This is known as Isomerism.

If there is difference only in the connectivity of the atoms in the molecule, then it is known as constitutional isomerism.  The isomers are known as constitutional isomers.  They will have same molecular formula and same functional group, but they differ in the connectivity between the atoms in the molecule.

In case of alkenes, two different constitutional isomers subtypes are possible.  They are skeletal isomers and positional isomers.

Skeletal isomers are a type of constitutional isomers which have different carbon‑atom arrangement and have the same functional group in them.

Positional isomers are a type of constitutional isomers which have same carbon‑atom arrangement and have difference in location of functional group in them.

(d)

Interpretation Introduction

Interpretation:

The total number of constitutional isomers that is possible for a compound with five carbon atoms in which two methyl groups and a double bond is present has to be given.

Concept Introduction:

Organic compounds are represented shortly by the molecular formula and structural formula.  Each and every compound has its own molecular formula.  Compounds can have same molecular formula but not same structural formula.

Isomers are the compounds that have same molecular formula but different structural formula.  The main difference lies in the way the atoms are arranged in the structure.  Isomers have different chemical and physical properties even when they have same molecular formula.  This is known as Isomerism.

If there is difference only in the connectivity of the atoms in the molecule, then it is known as constitutional isomerism.  The isomers are known as constitutional isomers.  They will have same molecular formula and same functional group, but they differ in the connectivity between the atoms in the molecule.

In case of alkenes, two different constitutional isomers subtypes are possible.  They are skeletal isomers and positional isomers.

Skeletal isomers are a type of constitutional isomers which have different carbon‑atom arrangement and have the same functional group in them.

Positional isomers are a type of constitutional isomers which have same carbon‑atom arrangement and have difference in location of functional group in them.

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-2.3 P-4QQSect-2.4 P-1QQSect-2.4 P-2QQSect-2.5 P-1QQSect-2.5 P-2QQSect-2.5 P-3QQSect-2.6 P-1QQSect-2.6 P-2QQSect-2.6 P-3QQSect-2.7 P-1QQSect-2.7 P-2QQSect-2.7 P-3QQSect-2.8 P-1QQSect-2.8 P-2QQSect-2.9 P-1QQSect-2.9 P-2QQSect-2.10 P-1QQSect-2.10 P-2QQSect-2.10 P-3QQSect-2.10 P-4QQSect-2.10 P-5QQSect-2.11 P-1QQSect-2.11 P-2QQSect-2.11 P-3QQSect-2.11 P-4QQSect-2.11 P-5QQSect-2.12 P-1QQSect-2.12 P-2QQSect-2.12 P-3QQSect-2.12 P-4QQSect-2.12 P-5QQSect-2.13 P-1QQSect-2.13 P-2QQSect-2.13 P-3QQSect-2.14 P-1QQSect-2.14 P-2QQSect-2.14 P-3QQSect-2.14 P-4QQSect-2.15 P-1QQSect-2.15 P-2QQSect-2.15 P-3QQSect-2.15 P-4QQSect-2.16 P-1QQSect-2.16 P-2QQCh-2 P-2.1EPCh-2 P-2.2EPCh-2 P-2.3EPCh-2 P-2.4EPCh-2 P-2.5EPCh-2 P-2.6EPCh-2 P-2.7EPCh-2 P-2.8EPCh-2 P-2.9EPCh-2 P-2.10EPCh-2 P-2.11EPCh-2 P-2.12EPCh-2 P-2.13EPCh-2 P-2.14EPCh-2 P-2.15EPCh-2 P-2.16EPCh-2 P-2.17EPCh-2 P-2.18EPCh-2 P-2.19EPCh-2 P-2.20EPCh-2 P-2.21EPCh-2 P-2.22EPCh-2 P-2.23EPCh-2 P-2.24EPCh-2 P-2.25EPCh-2 P-2.26EPCh-2 P-2.27EPCh-2 P-2.28EPCh-2 P-2.29EPCh-2 P-2.30EPCh-2 P-2.31EPCh-2 P-2.32EPCh-2 P-2.33EPCh-2 P-2.34EPCh-2 P-2.35EPCh-2 P-2.36EPCh-2 P-2.37EPCh-2 P-2.38EPCh-2 P-2.39EPCh-2 P-2.40EPCh-2 P-2.41EPCh-2 P-2.42EPCh-2 P-2.43EPCh-2 P-2.44EPCh-2 P-2.45EPCh-2 P-2.46EPCh-2 P-2.47EPCh-2 P-2.48EPCh-2 P-2.49EPCh-2 P-2.50EPCh-2 P-2.51EPCh-2 P-2.52EPCh-2 P-2.53EPCh-2 P-2.54EPCh-2 P-2.55EPCh-2 P-2.56EPCh-2 P-2.57EPCh-2 P-2.58EPCh-2 P-2.59EPCh-2 P-2.60EPCh-2 P-2.61EPCh-2 P-2.62EPCh-2 P-2.63EPCh-2 P-2.64EPCh-2 P-2.65EPCh-2 P-2.66EPCh-2 P-2.67EPCh-2 P-2.68EPCh-2 P-2.69EPCh-2 P-2.70EPCh-2 P-2.71EPCh-2 P-2.72EPCh-2 P-2.73EPCh-2 P-2.74EPCh-2 P-2.75EPCh-2 P-2.76EPCh-2 P-2.77EPCh-2 P-2.78EPCh-2 P-2.79EPCh-2 P-2.80EPCh-2 P-2.81EPCh-2 P-2.82EPCh-2 P-2.83EPCh-2 P-2.84EPCh-2 P-2.85EPCh-2 P-2.86EPCh-2 P-2.87EPCh-2 P-2.88EPCh-2 P-2.89EPCh-2 P-2.90EPCh-2 P-2.91EPCh-2 P-2.92EPCh-2 P-2.93EPCh-2 P-2.94EPCh-2 P-2.95EPCh-2 P-2.96EPCh-2 P-2.97EPCh-2 P-2.98EPCh-2 P-2.99EPCh-2 P-2.100EPCh-2 P-2.101EPCh-2 P-2.102EPCh-2 P-2.103EPCh-2 P-2.104EPCh-2 P-2.105EPCh-2 P-2.106EPCh-2 P-2.107EPCh-2 P-2.108EPCh-2 P-2.109EPCh-2 P-2.110EPCh-2 P-2.111EPCh-2 P-2.112EPCh-2 P-2.113EPCh-2 P-2.114EPCh-2 P-2.115EPCh-2 P-2.116EPCh-2 P-2.117EPCh-2 P-2.118EPCh-2 P-2.119EPCh-2 P-2.120EPCh-2 P-2.121EPCh-2 P-2.122EPCh-2 P-2.123EPCh-2 P-2.124EPCh-2 P-2.125EPCh-2 P-2.126EPCh-2 P-2.127EPCh-2 P-2.128EPCh-2 P-2.129EPCh-2 P-2.130EP

Additional Science Solutions

Find more solutions based on key concepts

Show solutions add

Smoking powerfully raises the risk for CVD in men and women in all of the following ways except a. decreasing t...

Nutrition: Concepts and Controversies - Standalone book (MindTap Course List)

What is the most common type of star?

Horizons: Exploring the Universe (MindTap Course List)