BuyFindarrow_forward

Organic And Biological Chemistry

7th Edition
STOKER + 1 other
ISBN: 9781305081079

Solutions

Chapter
Section
BuyFindarrow_forward

Organic And Biological Chemistry

7th Edition
STOKER + 1 other
ISBN: 9781305081079
Textbook Problem

With the help of Figure 13-7, indicate whether each of the following alkenes would be expected to be a solid, liquid, or gas at room temperature and pressure.

  1. a. Propene
  2. b. 1-Hexene
  3. c. Cyclopentene
  4. d. Cycloheptene

(a)

Interpretation Introduction

Interpretation:

The physical state of propene at room temperature and pressure has to be indicated with the help of Figure 13-7.

Concept Introduction:

Organic compounds are represented shortly by the molecular formula and structural formula. Each and every compound has its own molecular formula. Compounds can have same molecular formula but not same structural formula.

Alkenes are linear chain unsaturated hydrocarbons and cycloalkenes are cyclic carbon chain unsaturated hydrocarbons. They both occur naturally.

Alkenes and cycloalkenes are hydrocarbons. They are nonpolar molecules. Water is a polar molecule. Therefore, alkenes and cycloalkenes do not get solubilized in water. In other words, alkenes and cycloalkenes are insoluble in water.

Regarding density, alkenes and cycloalkenes have density lower than water. When alkenes and cycloalkenes are mixed with water, two layers are formed which is a result of insolubility. Alkenes and cycloalkenes are present on top of water layer which is due to lesser density.

Boiling point of alkenes and cycloalkenes increase with an increase in carbon‑chain length or the ring size. The continuous chain alkenes which contain two to four carbon atoms are gases at room temperature. The continuous chain alkenes that contain five to seventeen carbon atoms and one double bond are liquids at room temperature.

When branching happens in the carbon chain, it lowers the boiling point of alkenes. In simple words, unbranched alkenes have more boiling point than branched alkenes with the same number of carbon atoms.

Cycloalkenes have more boiling point compared to noncyclic alkenes with the same number of carbon atoms. This is due to the more rigid and more symmetrical structures that occur in cyclic systems. Cyclopropene and cyclobutene are relatively unstable compound and gets converted into other hydrocarbons.

Explanation

Figure 13-7 is,

The given compound is propene...

(b)

Interpretation Introduction

Interpretation:

The physical state of 1-hexene at room temperature and pressure has to be indicated with the help of Figure 13-7.

Concept Introduction:

Organic compounds are represented shortly by the molecular formula and structural formula. Each and every compound has its own molecular formula. Compounds can have same molecular formula but not same structural formula.

Alkenes are linear chain unsaturated hydrocarbons and cycloalkenes are cyclic carbon chain unsaturated hydrocarbons. They both occur naturally.

Alkenes and cycloalkenes are hydrocarbons. They are nonpolar molecules. Water is a polar molecule. Therefore, alkenes and cycloalkenes do not get solubilized in water. In other words, alkenes and cycloalkenes are insoluble in water.

Regarding density, alkenes and cycloalkenes have density lower than water. When alkenes and cycloalkenes are mixed with water, two layers are formed which is a result of insolubility. Alkenes and cycloalkenes are present on top of water layer which is due to lesser density.

Boiling point of alkenes and cycloalkenes increase with an increase in carbon‑chain length or the ring size. The continuous chain alkenes which contain two to four carbon atoms are gases at room temperature. The continuous chain alkenes that contain five to seventeen carbon atoms and one double bond are liquids at room temperature.

When branching happens in the carbon chain, it lowers the boiling point of alkenes. In simple words, unbranched alkenes have more boiling point than branched alkenes with the same number of carbon atoms.

Cycloalkenes have more boiling point compared to noncyclic alkenes with the same number of carbon atoms. This is due to the more rigid and more symmetrical structures that occur in cyclic systems. Cyclopropene and cyclobutene are relatively unstable compound and gets converted into other hydrocarbons.

(c)

Interpretation Introduction

Interpretation:

The physical state of cyclopentene at room temperature and pressure has to be indicated with the help of Figure 13-7.

Concept Introduction:

Organic compounds are represented shortly by the molecular formula and structural formula. Each and every compound has its own molecular formula. Compounds can have same molecular formula but not same structural formula.

Alkenes are linear chain unsaturated hydrocarbons and cycloalkenes are cyclic carbon chain unsaturated hydrocarbons. They both occur naturally.

Alkenes and cycloalkenes are hydrocarbons. They are nonpolar molecules. Water is a polar molecule. Therefore, alkenes and cycloalkenes do not get solubilized in water. In other words, alkenes and cycloalkenes are insoluble in water.

Regarding density, alkenes and cycloalkenes have density lower than water. When alkenes and cycloalkenes are mixed with water, two layers are formed which is a result of insolubility. Alkenes and cycloalkenes are present on top of water layer which is due to lesser density.

Boiling point of alkenes and cycloalkenes increase with an increase in carbon‑chain length or the ring size. The continuous chain alkenes which contain two to four carbon atoms are gases at room temperature. The continuous chain alkenes that contain five to seventeen carbon atoms and one double bond are liquids at room temperature.

When branching happens in the carbon chain, it lowers the boiling point of alkenes. In simple words, unbranched alkenes have more boiling point than branched alkenes with the same number of carbon atoms.

Cycloalkenes have more boiling point compared to noncyclic alkenes with the same number of carbon atoms. This is due to the more rigid and more symmetrical structures that occur in cyclic systems. Cyclopropene and cyclobutene are relatively unstable compound and gets converted into other hydrocarbons.

(d)

Interpretation Introduction

Interpretation:

The physical state of cycloheptene at room temperature and pressure has to be indicated with the help of Figure 13-7.

Concept Introduction:

Organic compounds are represented shortly by the molecular formula and structural formula. Each and every compound has its own molecular formula. Compounds can have same molecular formula but not same structural formula.

Alkenes are linear chain unsaturated hydrocarbons and cycloalkenes are cyclic carbon chain unsaturated hydrocarbons. They both occur naturally.

Alkenes and cycloalkenes are hydrocarbons. They are nonpolar molecules. Water is a polar molecule. Therefore, alkenes and cycloalkenes do not get solubilized in water. In other words, alkenes and cycloalkenes are insoluble in water.

Regarding density, alkenes and cycloalkenes have density lower than water. When alkenes and cycloalkenes are mixed with water, two layers are formed which is a result of insolubility. Alkenes and cycloalkenes are present on top of water layer which is due to lesser density.

Boiling point of alkenes and cycloalkenes increase with an increase in carbon‑chain length or the ring size. The continuous chain alkenes which contain two to four carbon atoms are gases at room temperature. The continuous chain alkenes that contain five to seventeen carbon atoms and one double bond are liquids at room temperature.

When branching happens in the carbon chain, it lowers the boiling point of alkenes. In simple words, unbranched alkenes have more boiling point than branched alkenes with the same number of carbon atoms.

Cycloalkenes have more boiling point compared to noncyclic alkenes with the same number of carbon atoms. This is due to the more rigid and more symmetrical structures that occur in cyclic systems. Cyclopropene and cyclobutene are relatively unstable compound and gets converted into other hydrocarbons.

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-2.3 P-4QQSect-2.4 P-1QQSect-2.4 P-2QQSect-2.5 P-1QQSect-2.5 P-2QQSect-2.5 P-3QQSect-2.6 P-1QQSect-2.6 P-2QQSect-2.6 P-3QQSect-2.7 P-1QQSect-2.7 P-2QQSect-2.7 P-3QQSect-2.8 P-1QQSect-2.8 P-2QQSect-2.9 P-1QQSect-2.9 P-2QQSect-2.10 P-1QQSect-2.10 P-2QQSect-2.10 P-3QQSect-2.10 P-4QQSect-2.10 P-5QQSect-2.11 P-1QQSect-2.11 P-2QQSect-2.11 P-3QQSect-2.11 P-4QQSect-2.11 P-5QQSect-2.12 P-1QQSect-2.12 P-2QQSect-2.12 P-3QQSect-2.12 P-4QQSect-2.12 P-5QQSect-2.13 P-1QQSect-2.13 P-2QQSect-2.13 P-3QQSect-2.14 P-1QQSect-2.14 P-2QQSect-2.14 P-3QQSect-2.14 P-4QQSect-2.15 P-1QQSect-2.15 P-2QQSect-2.15 P-3QQSect-2.15 P-4QQSect-2.16 P-1QQSect-2.16 P-2QQCh-2 P-2.1EPCh-2 P-2.2EPCh-2 P-2.3EPCh-2 P-2.4EPCh-2 P-2.5EPCh-2 P-2.6EPCh-2 P-2.7EPCh-2 P-2.8EPCh-2 P-2.9EPCh-2 P-2.10EPCh-2 P-2.11EPCh-2 P-2.12EPCh-2 P-2.13EPCh-2 P-2.14EPCh-2 P-2.15EPCh-2 P-2.16EPCh-2 P-2.17EPCh-2 P-2.18EPCh-2 P-2.19EPCh-2 P-2.20EPCh-2 P-2.21EPCh-2 P-2.22EPCh-2 P-2.23EPCh-2 P-2.24EPCh-2 P-2.25EPCh-2 P-2.26EPCh-2 P-2.27EPCh-2 P-2.28EPCh-2 P-2.29EPCh-2 P-2.30EPCh-2 P-2.31EPCh-2 P-2.32EPCh-2 P-2.33EPCh-2 P-2.34EPCh-2 P-2.35EPCh-2 P-2.36EPCh-2 P-2.37EPCh-2 P-2.38EPCh-2 P-2.39EPCh-2 P-2.40EPCh-2 P-2.41EPCh-2 P-2.42EPCh-2 P-2.43EPCh-2 P-2.44EPCh-2 P-2.45EPCh-2 P-2.46EPCh-2 P-2.47EPCh-2 P-2.48EPCh-2 P-2.49EPCh-2 P-2.50EPCh-2 P-2.51EPCh-2 P-2.52EPCh-2 P-2.53EPCh-2 P-2.54EPCh-2 P-2.55EPCh-2 P-2.56EPCh-2 P-2.57EPCh-2 P-2.58EPCh-2 P-2.59EPCh-2 P-2.60EPCh-2 P-2.61EPCh-2 P-2.62EPCh-2 P-2.63EPCh-2 P-2.64EPCh-2 P-2.65EPCh-2 P-2.66EPCh-2 P-2.67EPCh-2 P-2.68EPCh-2 P-2.69EPCh-2 P-2.70EPCh-2 P-2.71EPCh-2 P-2.72EPCh-2 P-2.73EPCh-2 P-2.74EPCh-2 P-2.75EPCh-2 P-2.76EPCh-2 P-2.77EPCh-2 P-2.78EPCh-2 P-2.79EPCh-2 P-2.80EPCh-2 P-2.81EPCh-2 P-2.82EPCh-2 P-2.83EPCh-2 P-2.84EPCh-2 P-2.85EPCh-2 P-2.86EPCh-2 P-2.87EPCh-2 P-2.88EPCh-2 P-2.89EPCh-2 P-2.90EPCh-2 P-2.91EPCh-2 P-2.92EPCh-2 P-2.93EPCh-2 P-2.94EPCh-2 P-2.95EPCh-2 P-2.96EPCh-2 P-2.97EPCh-2 P-2.98EPCh-2 P-2.99EPCh-2 P-2.100EPCh-2 P-2.101EPCh-2 P-2.102EPCh-2 P-2.103EPCh-2 P-2.104EPCh-2 P-2.105EPCh-2 P-2.106EPCh-2 P-2.107EPCh-2 P-2.108EPCh-2 P-2.109EPCh-2 P-2.110EPCh-2 P-2.111EPCh-2 P-2.112EPCh-2 P-2.113EPCh-2 P-2.114EPCh-2 P-2.115EPCh-2 P-2.116EPCh-2 P-2.117EPCh-2 P-2.118EPCh-2 P-2.119EPCh-2 P-2.120EPCh-2 P-2.121EPCh-2 P-2.122EPCh-2 P-2.123EPCh-2 P-2.124EPCh-2 P-2.125EPCh-2 P-2.126EPCh-2 P-2.127EPCh-2 P-2.128EPCh-2 P-2.129EPCh-2 P-2.130EP

Additional Science Solutions

Find more solutions based on key concepts

Show solutions add

Breastfed infants may need supplements of fluoride, iron, and vitamin D zinc, iron, and vitamin G vitamin E, ca...

Nutrition: Concepts and Controversies - Standalone book (MindTap Course List)

Why do we use different map projections?

Fundamentals of Physical Geography