Fundamentals of Electromagnetics with Engineering Applications
Fundamentals of Electromagnetics with Engineering Applications
5th Edition
ISBN: 9780471263555
Author: Stuart M. Wentworth
Publisher: John Wiley & Sons
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 2.71P

A parallel–plate capacitor with a 1.0 m 2 surface area for each plate, a 2.0–mm plate separation, and a dielectric with relative permittivity of 1200 has a 12.–V potential difference across the plates. (a) What is the minimum allowed dielectric strength for this capacitor? Calculate (b) the capacitance and (c) the magnitude of the charge density on one of the plates.

Blurred answer
Students have asked these similar questions
A capacitor is made from two flat parallel plates placed 2 mm apart, .and its capacitance at vacuum  is 10-12- F , if 200 volt applied in between then a Dielectric material was entered  and its Dielectric constant Is 49  , Calculate : a) the new value of capacitance after the entrance of the Dielectric b) what is the value of charge on Dielectric material surface c) the polarization p of the Dielectric material d) calculate the displacement and the field inside the Dielectric
A ceramic capacitor has an effective plate area of 4 cm2 separated by 0.1 mm of ceramic of relative permittivity 100. Calculate the capacitance of the capacitor in picofarads. If the capacitor in part is given a charge of 1.2 µC what will be the p.d. between the plates?
Two parallel plates of area A=0.01 m^2 are separated by a distance d=5x10^-3 m. The region between these plates is filled with dielectric material of k= 3 and the plates are given equal but opposite charges of 2 micro coulombs. (a) What is the capacitance of this capacitor? (b) Find the potential difference between the plates?

Chapter 2 Solutions

Fundamentals of Electromagnetics with Engineering Applications

Ch. 2 - Prob. 2.11PCh. 2 - Prob. 2.12PCh. 2 - Prob. 2.13PCh. 2 - A 20.0–cm–long section of copper pipe has a...Ch. 2 - A line charge with charge density 2.00nC/m exists...Ch. 2 - You are given two z–directed line charges of...Ch. 2 - Suppose you have a segment of line charge of...Ch. 2 - A segment of line charge L=10.nC/m exists on the...Ch. 2 - In free space, there is a point charge Q=8.0nC at...Ch. 2 - Prob. 2.20PCh. 2 - Sketch the following surfaces and find the total...Ch. 2 - Consider a circular disk in the x–y plane of...Ch. 2 - Suppose a ribbon of charge with density S exists...Ch. 2 - Sketch the following volumes and find the total...Ch. 2 - You have a cylinder of 4.00–in diameter and...Ch. 2 - Consider a rectangular volume with...Ch. 2 - Prob. 2.27PCh. 2 - Prob. 2.28PCh. 2 - Given D=2a+sinazC/m2, find the electric flux...Ch. 2 - Suppose the electric flux density is given by...Ch. 2 - Prob. 2.31PCh. 2 - A cylindrical pipe with a 1.00–cm wall thickness...Ch. 2 - Prob. 2.34PCh. 2 - Prob. 2.35PCh. 2 - A thick–walled spherical shell, with inner...Ch. 2 - Prob. 2.37PCh. 2 - Determine the charge density at the point...Ch. 2 - Given D=3ax+2xyay+8x2y3azC/m2, (a) determine the...Ch. 2 - Suppose D=6cosaC/m2. (a) Determine the charge...Ch. 2 - Suppose D=r2sinar+sincosaC/m2. (a) Determine the...Ch. 2 - Prob. 2.42PCh. 2 - A surface is defined by the function 2x+4y21nz=12....Ch. 2 - For the following potential distributions, use the...Ch. 2 - A 100nC point charge is located at the origin. (a)...Ch. 2 - Prob. 2.46PCh. 2 - Prob. 2.47PCh. 2 - Prob. 2.48PCh. 2 - Suppose a 6.0–m–diameter ring with charge...Ch. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - The typical length of each piece of jumper wire on...Ch. 2 - A 150–m length of AWG–22 (0.644 mm diameter)...Ch. 2 - Determine an expression for the power dissipated...Ch. 2 - Find the resistance per unit length of a stainless...Ch. 2 - A nickel wire of diameter 5.0 mm is surrounded by...Ch. 2 - Prob. 2.57PCh. 2 - A 20nC point charge at the origin is embedded in...Ch. 2 - Suppose the force is very carefully measured...Ch. 2 - The potential field in a material with r=10.2 is...Ch. 2 - In a mineral oil dielectric, with breakdown...Ch. 2 - Prob. 2.62PCh. 2 - For z0,r1=9.0 and for z0,r2=4.0. If E1 makes a 300...Ch. 2 - Prob. 2.64PCh. 2 - Consider a dielectric–dielectric charge–free...Ch. 2 - A 1.0–cm–diameter conductor is sheathed with a...Ch. 2 - Prob. 2.67PCh. 2 - For a coaxial cable of inner conductor radius a...Ch. 2 - Prob. 2.69PCh. 2 - Prob. 2.70PCh. 2 - A parallel–plate capacitor with a 1.0m2 surface...Ch. 2 - Prob. 2.72PCh. 2 - Prob. 2.73PCh. 2 - Given E=5xyax+3zaZV/m, find the electrostatic...Ch. 2 - Suppose a coaxial capacitor with inner radius 1.0...
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Text book image
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Text book image
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Text book image
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Capacitors Explained - The basics how capacitors work working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=X4EUwTwZ110;License: Standard YouTube License, CC-BY