CHEMISTRY: ATOMS FIRST VOL 1 W/CONNECT
CHEMISTRY: ATOMS FIRST VOL 1 W/CONNECT
14th Edition
ISBN: 9781259327933
Author: Burdge
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 2.77QP

Identify each of the following elements: (a) a halogen containing 53 electrons, (b) a radioactive noble gas with 86 protons, (c) a Group 6A element with 34 electrons, (d) an alkali metal that contains 11 electrons, (e) a Group 4A element that contains 82 electrons.

a)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation: The symbols for each atom to be identified.

Concept Introduction:

Conversion of atoms to moles: no.of moles  = no.of atomsAvogadro's number.

Nuclear stability: The nucleus is composed of protons and neutrons. The strongest nuclear force binds the particles tightly. Though the protons repel each other due to no attraction between similar charges, possess short-range attractions made the attraction possible between proton and proton, proton and neutron, neutron and neutron.

The stability of any element is determined by the difference between columbic repulsion and the short-range attraction. If repulsion outweighs the attraction, the disintegration of nucleus occurs by producing the daughter nuclides. If the attractive forces prevail, the nucleus is stable.

Answer to Problem 2.77QP

The element is Iodine

Explanation of Solution

Identify the element.

The element symbol : ZAX,Z (atomic number) = no. of protons. (protons = electrons)= 53.The element is : Iodine.

The number of electron is equal to the number proton in the nucleus, thus from the periodic table atomic number 53 revels the element is Iodine.

Conclusion
The symbol given element identified.

b)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation: The symbols for each atom to be identified.

Concept Introduction:

Conversion of atoms to moles: no.of moles  = no.of atomsAvogadro's number.

Nuclear stability: The nucleus is composed of protons and neutrons. The strongest nuclear force binds the particles tightly. Though the protons repel each other due to no attraction between similar charges, possess short-range attractions made the attraction possible between proton and proton, proton and neutron, neutron and neutron.

The stability of any element is determined by the difference between coulombic repulsion and the short-range attraction. If repulsion outweighs the attraction, the disintegration of nucleus occurs by producing the daughter nuclides. If the attractive forces prevail, the nucleus is stable.

Answer to Problem 2.77QP

The element is Radon.

Explanation of Solution

Identify the element.

The element symbol : ZAX,Z (atomic number) = no. of protons. (protons = electrons)= 86.The element is : Radon.

The number of electron is equal to the number proton in the nucleus. The number of protons is same as the atomic number of an element. From the periodic table atomic number 86 reveals the element is Radon.

Conclusion
The symbol given element identified.

c)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation: The symbols for each atom to be identified.

Concept Introduction:

Conversion of atoms to moles: no.of moles  = no.of atomsAvogadro's number.

Nuclear stability: The nucleus is composed of protons and neutrons. The strongest nuclear force binds the particles tightly. Though the protons repel each other due to no attraction between similar charges, possess short-range attractions made the attraction possible between proton and proton, proton and neutron, neutron and neutron.

The stability of any element is determined by the difference between columbic repulsion and the short-range attraction. If repulsion outweighs the attraction, the disintegration of nucleus occurs by producing the daughter nuclides. If the attractive forces prevail, the nucleus is stable.

Answer to Problem 2.77QP

The element is Selenium.

Explanation of Solution

Identify the element.

The element symbol : ZAX,Z (atomic number) = no. of protons. (protons = electrons)= 34.The element is : Selenium.

The number of electron is equal to the number proton in the nucleus. The number of protons or the electrons is same as the atomic number of an element. From the periodic table atomic number 34 reveals the element is Selenium.

Conclusion
The symbol given element identified.

d)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation: The symbols for each atom to be identified.

Concept Introduction:

Conversion of atoms to moles: no.of moles  = no.of atomsAvogadro's number.

Nuclear stability: The nucleus is composed of protons and neutrons. The strongest nuclear force binds the particles tightly. Though the protons repel each other due to no attraction between similar charges, possess short-range attractions made the attraction possible between proton and proton, proton and neutron, neutron and neutron.

The stability of any element is determined by the difference between columbic repulsion and the short-range attraction. If repulsion outweighs the attraction, the disintegration of nucleus occurs by producing the daughter nuclides. If the attractive forces prevail, the nucleus is stable.

Answer to Problem 2.77QP

The element is Sodium.

Explanation of Solution

Identify the element.

The element symbol : ZAX,Z (atomic number) = no. of protons. (protons = electrons)= 11.The element is : Sodium.

The number of electron is equal to the number proton in the nucleus. The number of protons (or the electrons) is same as the atomic number of an element. From the periodic table atomic number 11 reveals the element is Sodium.

Conclusion
The symbol given element identified.

e)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation: The symbols for each atom to be identified.

Concept Introduction:

Conversion of atoms to moles: no.of moles  = no.of atomsAvogadro's number.

Nuclear stability: The nucleus is composed of protons and neutrons. The strongest nuclear force binds the particles tightly. Though the protons repel each other due to no attraction between similar charges, possess short-range attractions made the attraction possible between proton and proton, proton and neutron, neutron and neutron.

The stability of any element is determined by the difference between coulombic repulsion and the short-range attraction. If repulsion outweighs the attraction, the disintegration of nucleus occurs by producing the daughter nuclides. If the attractive forces prevail, the nucleus is stable.

Answer to Problem 2.77QP

The element is Lead.

Explanation of Solution

Identify the element.

The element symbol : ZAX,Z (atomic number) = no. of protons. (protons = electrons)= 82.The element is : Lead.

The number of electron is equal to the number proton in the nucleus. The number of protons or the electrons is same as the atomic number of an element. From the periodic table atomic number 82 reveals the element is Lead.

Conclusion
The symbol given element identified.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 2 Solutions

CHEMISTRY: ATOMS FIRST VOL 1 W/CONNECT

Ch. 2.5 - The average atomic mass of nitrogen is 14.0067....Ch. 2.5 - Prob. 2PPCCh. 2.5 - Boron has two naturally occurring isotopes, 10B...Ch. 2.5 - The two naturally occurring isotopes of antimony,...Ch. 2.6 - Prob. 2.6.1SRCh. 2.6 - Prob. 2.6.2SRCh. 2.7 - Calcium is the most abundant metal in the human...Ch. 2.7 - Prob. 3PPACh. 2.7 - Calculate (a) the number of atoms in 1.05 106...Ch. 2.7 - Prob. 3PPCCh. 2.7 - Prob. 2.4WECh. 2.7 - Prob. 4PPACh. 2.7 - Prob. 4PPBCh. 2.7 - Prob. 4PPCCh. 2.7 - Prob. 2.5WECh. 2.7 - Prob. 5PPACh. 2.7 - Prob. 5PPBCh. 2.7 - Prob. 5PPCCh. 2.7 - Prob. 2.7.1SRCh. 2.7 - Prob. 2.7.2SRCh. 2.7 - Prob. 2.7.3SRCh. 2.7 - Prob. 2.7.4SRCh. 2 - Define the terms atom and element.Ch. 2 - Use a familiar macroscopic example as an analogy...Ch. 2 - Prob. 2.3QPCh. 2 - Prob. 2.4QPCh. 2 - Prob. 2.5QPCh. 2 - Prob. 2.6QPCh. 2 - Describe the experimental basis for believing that...Ch. 2 - Prob. 2.8QPCh. 2 - Prob. 2.9QPCh. 2 - Prob. 2.10QPCh. 2 - Prob. 2.11QPCh. 2 - Prob. 2.12QPCh. 2 - Prob. 2.13QPCh. 2 - Prob. 2.14QPCh. 2 - Prob. 2.15QPCh. 2 - Prob. 2.16QPCh. 2 - Prob. 2.17QPCh. 2 - Prob. 2.18QPCh. 2 - Prob. 2.19QPCh. 2 - Determine the mass number of (a) a beryllium atom...Ch. 2 - Prob. 2.21QPCh. 2 - The following radioactive isotopes are used in...Ch. 2 - Prob. 2.23QPCh. 2 - Prob. 2.24QPCh. 2 - Prob. 2.25QPCh. 2 - Prob. 2.26QPCh. 2 - Prob. 2.27QPCh. 2 - Prob. 2.28QPCh. 2 - Prob. 2.29QPCh. 2 - Prob. 2.30QPCh. 2 - What is the mass (in amu) of a carbon-12 atom? Why...Ch. 2 - Prob. 2.32QPCh. 2 - What information would you need to calculate the...Ch. 2 - Prob. 2.34QPCh. 2 - Prob. 2.35QPCh. 2 - Prob. 2.36QPCh. 2 - Prob. 2.37QPCh. 2 - The element rubidium has two naturally occurring...Ch. 2 - Prob. 2.39QPCh. 2 - Prob. 2.40QPCh. 2 - Prob. 2.41QPCh. 2 - Give two examples of each of the following: (a)...Ch. 2 - Prob. 2.43QPCh. 2 - Prob. 2.44QPCh. 2 - Describe the changes in properties (from metals to...Ch. 2 - Consult the WebElements Periodic Table of the...Ch. 2 - Group the following elements in pairs that you...Ch. 2 - Prob. 2.48QPCh. 2 - Prob. 2.49QPCh. 2 - Prob. 2.50QPCh. 2 - Prob. 2.51QPCh. 2 - Prob. 2.52QPCh. 2 - Prob. 2.53QPCh. 2 - Prob. 2.54QPCh. 2 - Prob. 2.55QPCh. 2 - Prob. 2.56QPCh. 2 - Prob. 2.57QPCh. 2 - Prob. 2.58QPCh. 2 - Prob. 2.59QPCh. 2 - Prob. 2.60QPCh. 2 - Prob. 2.61QPCh. 2 - Prob. 2.62QPCh. 2 - Prob. 2.63QPCh. 2 - Prob. 2.64QPCh. 2 - The element francium (Fr) was the last element of...Ch. 2 - Prob. 2.66QPCh. 2 - Prob. 2.67QPCh. 2 - Prob. 2.68QPCh. 2 - Prob. 2.69QPCh. 2 - Prob. 2.70QPCh. 2 - Discuss the significance of assigning an atomic...Ch. 2 - Prob. 2.72QPCh. 2 - Prob. 2.73QPCh. 2 - Prob. 2.74QPCh. 2 - Prob. 2.75QPCh. 2 - Prob. 2.76QPCh. 2 - Identify each of the following elements: (a) a...Ch. 2 - Prob. 2.78QPCh. 2 - Prob. 2.79QPCh. 2 - Prob. 2.80QPCh. 2 - Prob. 2.81QPCh. 2 - Prob. 2.82QPCh. 2 - Prob. 2.83QPCh. 2 - Prob. 2.84QP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Atomic Number, Atomic Mass, and the Atomic Structure | How to Pass ChemistryThe Nucleus: Crash Course Chemistry #1; Author: Crash Course;https://www.youtube.com/watch?v=FSyAehMdpyI;License: Standard YouTube License, CC-BY