Physics for Scientists and Engineers
Physics for Scientists and Engineers
10th Edition
ISBN: 9781337553278
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Chapter 2, Problem 30P

At time t = 0, a student throws a set of keys vertically upward to her sorority sister, who is in a window at distance h above. The second student catches the keys at time t. (a) With what initial velocity were the keys thrown? (b) What was the velocity of the keys just before they were caught?

Blurred answer
Students have asked these similar questions
As soon as a ball was allowed to fall from rest from height h, a second ball was thrown upwards from the ground in the vertical direction. For two balls to meet at height h / 2, what should the initial velocity of the second ball be?
Two stones are thrown vertically up with the initial velocity v0, second stone with a time delay t0 with respect to the first one. At which time after the beginning of the motion the two stones will collide? Is this scenario possible for any v0 and t0? What are the limitations?
A particle moves down a horizontal route that begins 5 feet to the right of a specific point P with an initial velocity of 4 feet per second. Another particle is going along the same route, beginning 3 feet to the left of P with an initial velocity of 8 feet per second. Consider that the accelerations of the two particles are a1(t) = 2t 3 and a2(t) = 2t 5, respectively. Will the particles collide? Justify your response

Chapter 2 Solutions

Physics for Scientists and Engineers

Ch. 2 - An athlete leaves one end of a pool of length L at...Ch. 2 - A positiontime graph for a particle moving along...Ch. 2 - A car travels along a straight line at a constant...Ch. 2 - A person takes a trip, driving with a constant...Ch. 2 - A child rolls a marble on a bent track that is 100...Ch. 2 - Figure P2.9 shows a graph of vx versus t for the...Ch. 2 - (a) Use the data in Problem 3 to construct a...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - Draw motion diagrams for (a) an object moving to...Ch. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - An electron in a cathode-ray tube accelerates...Ch. 2 - A parcel of air moving in a straight tube with a...Ch. 2 - In Example 2.7, we investigated a jet landing on...Ch. 2 - An object moving with uniform acceleration has a...Ch. 2 - Solve Example 2.8 by a graphical method. On the...Ch. 2 - A glider of length moves through a stationary...Ch. 2 - Why is the following situation impossible?...Ch. 2 - A glider of length 12.4 cm moves on an air track...Ch. 2 - In the particle under constant acceleration model,...Ch. 2 - At t = 0, one toy car is set rolling on a straight...Ch. 2 - You are observing the poles along the side of the...Ch. 2 - Why is the following situation impossible? Emily...Ch. 2 - An attacker at the base of a castle wall 3.65 m...Ch. 2 - The height of a helicopter above the ground is...Ch. 2 - A ball is thrown upward from the ground with an...Ch. 2 - A student throws a set of keys vertically upward...Ch. 2 - At time t = 0, a student throws a set of keys...Ch. 2 - You have been hired by the prosecuting attorney as...Ch. 2 - A student drives a moped along a straight road as...Ch. 2 - Automotive engineers refer to the time rate of...Ch. 2 - In Figure 2.11b, the area under the velocitytime...Ch. 2 - The froghopper Philaenus spumarius is supposedly...Ch. 2 - A woman is reported to have fallen 144 ft from the...Ch. 2 - At t = 0, one athlete in a race running on a long,...Ch. 2 - Why is the following situation impossible? A...Ch. 2 - Hannah tests her new sports car by racing with...Ch. 2 - Two objects, A and B, are connected by hinges to a...Ch. 2 - Lisa rushes down onto a subway platform to find...Ch. 2 - Two thin rods are fastened to the inside of a...Ch. 2 - In a womens 100-m race, accelerating uniformly,...
Knowledge Booster
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • Most important in an investigation of an airplane crash by the U.S. National Transportation Safety Board is the data stored on the airplane’s flight-data recorder, commonly called the “black box” in spite of its orange coloring and reflective tape.The recorder is engineered to withstand a crash with an average deceleration of magnitude 3400g during a time interval of 6.50 ms. In such a crash, if the recorder and airplane have zero speed at the end of that time interval, what is their speed at the beginning of the interval?
    Suppose that a ball is thrown straight up in the air, and that a secondball is thrown straight upward two seconds after the first. It reaches thesame maximum height as the first ball, which is 6.00 m.a. What is the position of the first ball as a function of time, y1(t)?Take the initial height of the ball as y0 = 0.b. What is the position of the second ball as a function of time, y2(t)?Take the initial height of the ball as y0 = 0.c. Draw a y − t diagram of y1(t) and y2(t). Label the max heights, timeto max height for the first ball, and note the point corresponding to thetime and height of passing.d. When do the balls pass each other in the air? Assume the balls arebeing throw up adjacent to each other.e. At what height above y0 = 0 do the balls pass each other?f. Can you find the time of passing by just using the y − t diagram?
    On a one lane road, a person driving a car at v1 = 58 mi/h suddenly notices a truck 1.1 mi in front of him. That truck is moving in the same direction at v2 = 35 mi/h. In order to avoid a collision, the person has to reduce the speed of his car to v2 during time interval Δt. The smallest magnitude of acceleration required for the car to avoid a collision is a. During this problem, assume the direction of motion of the car is the positive direction.  1. Use the expressions you entered in parts (c) and (f) and enter an expression for a in terms of d, v1, and v2.  a = ( v2 - v1 )/Δt   Δt = ( 2 ) ( d )/( v1 - v2 ) 2. Calculate the value of a in meters per second squared.
  • At time t=0, a body has a velocity of 5 meters per second, EASTWARD; at time t=2 seconds, its velocity is 7 meters per second WESTWARD. What is the MAGNITUDE of the body's average acceleration?
    On a one lane road, a person driving a car at v1 = 54 mi/h suddenly notices a truck 0.65 mi in front of him. That truck is moving in the same direction at v2 = 35 mi/h. In order to avoid a collision, the person has to reduce the speed of his car tov2 during time interval Δt. The smallest magnitude of acceleration required for the car to avoid a collision is a. During this problem, assume the direction of motion of the car is the positive direction. Refer to the figure. Part (a) Enter an expression, in terms of defined quantities, for the distance, Δx2, traveled by the truck during the time interval Δt. Part (b) Enter an expression for the distance, Δx1, traveled by the car in terms of v1, v2 and a. Part (c) Enter an expression for the acceleration of the car, a, in terms of v1, v2, and Δt.
    On a one lane road, a person driving a car at v1 = 54 mi/h suddenly notices a truck 0.65 mi in front of him. That truck is moving in the same direction at v2 = 35 mi/h. In order to avoid a collision, the person has to reduce the speed of his car tov2 during time interval Δt. The smallest magnitude of acceleration required for the car to avoid a collision is a. During this problem, assume the direction of motion of the car is the positive direction. Refer to the figure. The expression, in terms of defined quantities, for the distance, Δx2, traveled by the truck during the time interval Δt is deltax2= v2 times delta t. Part (b) Enter an expression for the distance, Δx1, traveled by the car in terms of v1, v2 and a. Part (c) Enter an expression for the acceleration of the car, a, in terms of v1, v2, and Δt. (d) enter an expression for delta x1 in terms of delta x2 and d when the drive just barely avoids collision.
  • The figure shows the unusal path of a confused football player. After receiving a kickoff at his own goal, he runs downfield to within inches of a touchdown, when reverses direction and races back until he's tackled at the exact location where he first caught the ball. During this run, which took 25s what is (a) the path length he travels  (b) his displacement  (c) his average velocity in the x-direction and  (d) his average speed?
    Suppose that a ball is thrown straight up in the air, and that a secondball is thrown straight upward two seconds after the first. It reaches thesame maximum height as the first ball.a. What is the position of the first ball as a function of time, y1(t)?Take the initial height of the ball as y0 = 0.b. What is the position of the second ball as a function of time, y2(t)?Take the initial height of the ball as y0 = 0.c. Draw a y − t diagram of y1(t) and y2(t). Label the max heights, timeto max height for the first ball, and note the point corresponding to thetime and height of passing.d. When do the balls pass each other in the air? Assume the balls arebeing throw up adjacent to each other.e. At what height above y0 = 0 do the balls pass each other?f. Can you find the time of passing by just using the y − t diagram?
    A ball is thrown straight up from the ground with speed v0. At the same instant, a second ball is dropped from rest from a height H, directly above the point where the first ball was thrown upward. There is no air resistance. Find the time at which the two balls collide. Find the value of H in terms of vo and g so that at the instant when the balls collide, the first ball is at the highest point of its motion.
    • SEE MORE QUESTIONS
    Recommended textbooks for you
  • Principles of Physics: A Calculus-Based Text
    Physics
    ISBN:9781133104261
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
  • Principles of Physics: A Calculus-Based Text
    Physics
    ISBN:9781133104261
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    Relative Velocity - Basic Introduction; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=_39hCnqbNXM;License: Standard YouTube License, CC-BY