ENGINEERING MECH DYNAMICS W/MASTREV
ENGINEERING MECH DYNAMICS W/MASTREV
14th Edition
ISBN: 9780135881187
Author: HIBBELER
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 20.3, Problem 1P

(a)

To determine

The angular acceleration of the propeller when the turn is horizontal.

(a)

Expert Solution
Check Mark

Answer to Problem 1P

The angular acceleration of the propeller when the turn is horizontal is α=ωxωtj_.

Explanation of Solution

Write the expression of angular acceleration at constant speed.

    (ω˙x)XYZ=(ω˙x)xyz+Ω×ωx        (I)

Write the expression of angular acceleration turning at constant rate.

    (ω˙t)XYZ=(ω˙t)xyz+Ω×ωt        (II)

Here, ω˙ for the angular acceleration, x,y,z for the translating-rotating frame of reference, X,Y,Z for the fixed frame of reference, and Ω for angular velocity.

Write the expression of angular acceleration.

    α=(ω˙x)XYZ+(ω˙t)XYZ        (III)

Conclusion:

Substitute ωtk for Ω, 0 for (ω˙x)xyz, and ω˙si for ω˙s in Equation (I).

    (ω˙x)XYZ=0+(ω˙tk)×(ω˙xi)=ωxωtj

Substitute 0 for Ω, and 0 for (ω˙x)xyz in Equation (II).

    (ω˙t)XYZ=0+0=0

Substitute ωxωtj for (ω˙x)XYZ and 0 for (ω˙t)XYZ in Equation (III).

    α=ωxωtj+0=ωxωtj

Thus, the angular acceleration of the turn is horizontal ωtk is α=ωxωtj_.

(b)

To determine

The angular acceleration of the propeller when the turn is vertical, downward.

(b)

Expert Solution
Check Mark

Answer to Problem 1P

The angular acceleration of the propeller when the turn is vertical, downward is α=ωxωtk_.

Explanation of Solution

Substitute ωtj for Ω, 0 for (ω˙x)xyz, and ω˙si for ω˙s in Equation (I).

    (ω˙x)XYZ=0+(ω˙tj)×(ω˙xi)=ωxωtk

Substitute 0 for Ω, and 0 for (ω˙x)xyz in Equation (II).

    (ω˙t)XYZ=0+0=0

Substitute ωxωtk for (ω˙x)XYZ and 0 for (ω˙t)XYZ in Equation (III).

    α=ωxωtk+0=ωxωtk

Thus, the angular acceleration of the propeller when the turn is vertical, downward is α=ωxωtk_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The flywheel rotates with an angular speed of w = 8 rad/s and an angular velocity = 16 rad/s2. Determine the tangential velocity at point B.
The rod OA rotates in the horizontal plane such that =0.66t3 radian, and collar B is sliding outward along OA so that r=114t2 mm. If in both cases t is in seconds, determine the radial component of velocity (mm/s) of the collar when the collar is 128  mm from O. Round off only on the final answer expressed in 3 decimal places.  DONT ROUND OF IN THE ENTIRE SOLUTION, ONLY IN THE FINAL ANSWER
The cord, which is wrapped around the disk, is given an acceleration of a(t) =(10t) m/s 2 , where t is in seconds. Starting from rest, determine the angular displacement, angularvelocity, and angular acceleration of the disk when t = 3 s.

Chapter 20 Solutions

ENGINEERING MECH DYNAMICS W/MASTREV

Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY