Physics for Scientists and Engineers: Foundations and Connections
Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 21, Problem 20PQ

From Table 21.1, the specific heat of milk is 3.93 × 103 J/ (kg ∙ K). and the specific heat of water is 4.19 × 103 J/(kg ∙ K). Suppose you wish to make a large mug (0.500 L) of hot chocolate. Each liquid is initially at 5.00°C. and you need to raise their temperature to 80.0°C. The density of milk is about 1.03 × 103 kg/m3, and the density of water is 1.00 × 103 kg/m3. a. How much heat must be transferred in each case? b. If you use a small electric hot plate that puts out 455 W, how long would it take to heat each liquid?

(a)

Expert Solution
Check Mark
To determine

The amount of heat transferred to milk and water.

Answer to Problem 20PQ

The amount of heat transferred to milk is Qm=1.52×105J and water is Qw=1.57×105J.

Explanation of Solution

Write the expression for heat energy transferred to the system.

  Q=mcΔT                                                                                                     (I)

Here, Q is the heat energy, m is the mass, c is the specific heat capacity of the object, and ΔT is the change in temperature.

Write the expression for mass of the milk, relating density and volume.

  mm=ρmVm                                                                                                    (II)

Here, mm is the mass of the milk, ρm is the density of milk, and Vm is the volume of the milk container.

Write the expression for mass of the water, relating density and volume.

  mw=ρwVw                                                                                                    (III)

Here, mw is the mass of the water, ρw is the density of water, and Vw is the volume of the water container.

Rearrange the equation (I) to calculate the heat required for milk.

  Qm=mmcmΔT                                                                                             (IV)

Here, Qm is the heat energy required for milk and cm is the specific heat capacity of milk.

Rearrange the equation (I) to calculate the heat required for water.

  Qw=mwcwΔT                                                                                              (V)

Here, Qw is the heat energy required for water and cw is the specific heat capacity of water.

Conclusion:

Substitute 1.03×103kg/m3 for ρm and 0.500L for Vm in equation (II) to find ρm.

  mm=(1.03×103kg/m3)(0.500L)(0.001m31.0L)=0.515kg

Substitute 1.00×103kg/m3 for ρw and 0.500L for Vw in equation (III) to find ρw.

  mw=(1.00×103kg/m3)(0.500L)(0.001m31.0L)=0.500kg

Substitute 0.515kg for mm, 3.93×103J/kgK for cm, and 80.0°C5.00°C for ΔT in equation (IV) to find Qm.

  Qm=(0.515kg)(3.93×103J/kgK)(80.0°C5.00°C)=(0.515kg)(3.93×103J/kgK)(75.0°C)=1.52×105J

Substitute 0.500kg for mw, 4.19×103J/kgK for cw, and 80.0°C5.00°C for ΔT in equation (V) to find Qw.

  Qw=(0.500kg)(4.19×103J/kgK)(80.0°C5.00°C)=(0.500kg)(4.19×103J/kgK)(75.0°C)=1.57×105J

Therefore, the amount of heat transferred to milk is Qm=1.52×105J and water is Qw=1.57×105J.

(b)

Expert Solution
Check Mark
To determine

The time taken to heat milk and water.

Answer to Problem 20PQ

The time taken to heat milk is 3.34×102s and water is 3.45×102s.

Explanation of Solution

Write the expression for power (energy per unit time).

  P=QΔt

Here, P is the power of the electric hot plate and Δt is the time taken to heat.

Rearrange the above equation for Δt.

  Δt=QP                                                                                                                  (VI)

Rearrange the equation for time taken to heat the milk.

  Δtm=QmP                                                                                                            (VII)

Here, Δtm is the time taken to heat the milk.

Rearrange the equation for time taken to heat the water.

  Δtw=QwP                                                                                                            (VIII)

Here, Δtw is the time taken to heat the water.

Conclusion:

Substitute 1.52×105J for Qm and 455W for P in equation (VII) to find Δtm.

  Δtm=1.52×105J455W=3.34×102s

Substitute 1.57×105J for Qw and 455W for P in equation (VIII) to find Δtw.

  Δtw=1.57×105J455W=3.45×102s

Therefore, the time taken to heat milk is 3.34×102s and water is 3.45×102s.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A silver kettle weighs 1.07 kg. (The specific heat of silver is 0.235 J/g·°C)   (a) What is the heat capacity (in J/°C) of the kettle?  _____ J/°C   (b) How much heat (in J) is required to increase the temperature of this kettle from 20.5°C to 98.7°C?   _____ J   (c) How much heat (in J) is required to heat this kettle from 20.5°C to 98.7°C if it contains 1.03 L of water (density of 0.997 g/mL and a specific heat of 4.18 J/g·°C across the temperature range)?  _____ J
A common practice for a person with a high fever is to take a bath in cool water. Assuming an 80 kg person is really ill and needs to cool down from 40°C to 37°C. What is the minimum amount of water needed for bathing assuming the water begins at room temperature, 25°C? The specific heat of the body on average is 3470 J/kg°C and water is 4186 J/kg°C.   16.6 kg   212.2 kg   200 kg   19.8 kg
A 880 cm X 1680 cm house is built on a 15.6 cm thick concrete slab of thermal conductivity 0.62 W/m.K.. If the ground temperature of the slab is 7.6ºC while the interior of the house is 21ºC. Calculate the following: a) The temperature difference in kelvin Answer for part 1 . b) The temperature gradient (ΔT/Δx) in kelvin/metre Answer for part 2 . c) The heat loss rate through the concrete slab in kilowatt Answer for part 3 .

Chapter 21 Solutions

Physics for Scientists and Engineers: Foundations and Connections

Ch. 21 - Prob. 2PQCh. 21 - You extend an impromptu invitation to a friend for...Ch. 21 - Prob. 4PQCh. 21 - Prob. 5PQCh. 21 - Prob. 6PQCh. 21 - Prob. 7PQCh. 21 - Prob. 8PQCh. 21 - Prob. 9PQCh. 21 - Prob. 10PQCh. 21 - Prob. 11PQCh. 21 - Prob. 12PQCh. 21 - Prob. 13PQCh. 21 - Prob. 14PQCh. 21 - Prob. 15PQCh. 21 - Prob. 16PQCh. 21 - Prob. 17PQCh. 21 - Prob. 18PQCh. 21 - Prob. 19PQCh. 21 - From Table 21.1, the specific heat of milk is 3.93...Ch. 21 - Prob. 21PQCh. 21 - Prob. 22PQCh. 21 - An ideal gas is confined to a cylindrical...Ch. 21 - Prob. 24PQCh. 21 - You place frozen soup (T = 17C) in a microwave...Ch. 21 - A 25-g ice cube at 0.0C is heated. After it first...Ch. 21 - Prob. 27PQCh. 21 - Prob. 28PQCh. 21 - Prob. 29PQCh. 21 - Prob. 30PQCh. 21 - Consider the latent heat of fusion and the latent...Ch. 21 - Prob. 32PQCh. 21 - Prob. 33PQCh. 21 - A thermodynamic cycle is shown in Figure P21.34...Ch. 21 - Prob. 35PQCh. 21 - Figure P21.36 shows a cyclic thermodynamic process...Ch. 21 - Figure P21.37 shows a PV diagram for a gas that is...Ch. 21 - Prob. 38PQCh. 21 - Prob. 39PQCh. 21 - Prob. 40PQCh. 21 - Prob. 41PQCh. 21 - Prob. 42PQCh. 21 - Prob. 43PQCh. 21 - Prob. 44PQCh. 21 - Figure P21.45 shows a cyclic process ABCDA for...Ch. 21 - Prob. 46PQCh. 21 - Prob. 47PQCh. 21 - Prob. 48PQCh. 21 - Prob. 49PQCh. 21 - Prob. 50PQCh. 21 - Prob. 51PQCh. 21 - Prob. 52PQCh. 21 - Prob. 53PQCh. 21 - Prob. 54PQCh. 21 - Prob. 55PQCh. 21 - You extend an impromptu invitation to a friend for...Ch. 21 - Prob. 57PQCh. 21 - Prob. 58PQCh. 21 - A lake is covered with ice that is 2.0 cm thick....Ch. 21 - A concerned mother is dressing her child for play...Ch. 21 - Prob. 61PQCh. 21 - Prob. 62PQCh. 21 - Prob. 63PQCh. 21 - Prob. 64PQCh. 21 - Prob. 65PQCh. 21 - Prob. 66PQCh. 21 - Prob. 67PQCh. 21 - Prob. 68PQCh. 21 - Three 100.0-g ice cubes initially at 0C are added...Ch. 21 - Prob. 70PQCh. 21 - Prob. 71PQCh. 21 - Prob. 72PQCh. 21 - Prob. 73PQCh. 21 - Prob. 74PQCh. 21 - Prob. 75PQCh. 21 - Prob. 76PQCh. 21 - Prob. 77PQCh. 21 - Prob. 78PQCh. 21 - How much faster does a cup of tea cool by 1C when...Ch. 21 - The PV diagram in Figure P21.80 shows a set of...Ch. 21 - Prob. 81PQCh. 21 - Prob. 82PQCh. 21 - Prob. 83PQCh. 21 - Prob. 84PQCh. 21 - Prob. 85PQ
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Heat Transfer: Crash Course Engineering #14; Author: CrashCourse;https://www.youtube.com/watch?v=YK7G6l_K6sA;License: Standard YouTube License, CC-BY