Numerical Methods for Engineers
Numerical Methods for Engineers
7th Edition
ISBN: 9780073397924
Author: Steven C. Chapra Dr., Raymond P. Canale
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 21, Problem 2P

Evaluate the following integral:

0 3 ( 1 e 2 x ) d x

(a) Analytically;

(b) Single application of the trapezoidal rule;

(c) Multiple-application trapezoidal rule, with n = 2 and 4;

(d) Single application of Simpson's 1/3 rule;

(e) Multiple-applicationSimpson's 1/3 rule, with n = 4 ;

(f) Single application of Simpson's3/8 rule; and

(g) Multiple-application Simpson's rule, with n = 5 .

For each of the numerical estimates (b) through (g), determine the percent relative error based on (a).

(a)

Expert Solution
Check Mark
To determine

To calculate: The value of the integral 03(1e2x)dx analytically.

Answer to Problem 2P

Solution:

03(1e2x)dx=2.501239

Explanation of Solution

Given Information:

The integral, 03(1e2x)dx

Formula used:

abf(x)dx=[F(x)]ab=F(b)F(a)

Here, F(x) is integrand of f(x).

Calculation:

Consider the integral,

03(1e2x)dx

The value of the integral is,

03(1e2x)dx=[x+12e2x]03=[(3)+12e2(3)(0)12e2(0)]=(3+0.5e60.5)=2.501239

Therefore, the value of the integral is 03(1e2x)dx=2.501239

(b)

Expert Solution
Check Mark
To determine

To calculate: The value of the integral 03(1e2x)dx with the help of single applicationversion of the Trapezoidal rule.

Answer to Problem 2P

Solution:

03(1e2x)dx=1.496282 with percent relative error 40.18%

Explanation of Solution

Given Information:

The integral, 03(1e2x)dx

The exact value of the integral 03(1e2x)dx=2.501239

Formula used:

Single application version of Trapezoidal rule: If I=abf(x)dx any integral, then the value of the integral is,

I=(ba)[f(a)+f(b)2].

Percentage error is,

% error=|exact value  numerical valueexact value|×100

Calculation:

Consider the integral,

I=03(1e2x)dx

Single application version of Trapezoidal rule is,

I=(ba)[f(a)+f(b)2]

And Percentage error=|exact value  numerical valueexact value|×100

The value of the integral is,

03(1e2x)dx=2.501239=(30)[(1e2(3))+(1e2(0))2]=3[1e62]=1.496282

And Percentage error is,

% error=|exact value  numerical valueexact value|×100=|2.5012391.4962822.501239|×100=40.18%

Therefore, 03(1e2x)dx=1.496282 with percent relative error 40.18%

(c)

Expert Solution
Check Mark
To determine

To calculate: The value of the integral 03(1e2x)dx with the help of multiple application version of the Trapezoidal rule, with n=2 and 4.

Answer to Problem 2P

Solution:

03(1e2x)dx=2.17346 with percent relative error 13.10% when n=2 and 03(1e2x)dx=2.411051 with percent relative error 3.61% when n=4

Explanation of Solution

Given Information:

The integral, I=03(1e2x)dx

The exact value of the integral 03(1e2x)dx=2.501239

Formula used:

Multiple application version of Trapezoidal rule: If I=abf(x)dx any integral, then the value of the integral is

I=h2[f(x0)+2i=1n1f(xi)+f(xn)].

Here, h=ban is the step size and xi+1=xi+h ; i=0,1,2,...

Percentage error is,

% error=|exact value  numerical valueexact value|×100

Calculation:

Consider the integral,

I=03(1e2x)dx

Here, the function is,

f(x)=1e2x

Multiple application version of Trapezoidal rule is,

I=h2[f(x0)+2i=1n1f(xi)+f(xn)]

When n=2,

h=302=1.5

Here, x0=0

The value of the function at x0=0 is,

f(0)=1e2(0)=0

The value of x1 is,

x1=x0+h=0+1.5=1.5

The value of the function at x1=1.5 is,

f(1.5)=1e2(1.5)=1e3=0.950213

The value of x2 is,

x2=x1+h=1.5+1.5=3

The value of the function at x2=3,

f(3)=1e2(3)=1e6=0.997521

Thus, the value of the integral is,

03(1e2x)dx=h2[f(x0)+2f(x1)+f(x2)]=1.52[0+2(0.950213)+0.997521]=2.17346

Percentage error is,

% error=|exact value  numerical valueexact value|×100=|2.5012392.173462.501239|×100=13.10%

Multiple application version of Trapezoidal rule is,

I=h2[f(x0)+2i=1n1f(xi)+f(xn)]

When n=4,

h=304=0.75

Here, x0=0

The value of the function at x0=0 is,

f(0)=1e2(0)=0

The value of x1 is,

x1=x0+h=0+0.75=0.75

The value of the function at x1=0.75 is,

f(0.75)=1e2(0.75)=0.77687

The value of x2 is,

x2=x1+h=0.75+0.75=1.5

The value of the function at x2=1.5,

f(1.5)=1e2(1.5)=0.950213

The value of x3 is,

x3=x2+h=1.5+0.75=2.25

The value of the function at x3=2.25 is,

f(2.25)=1e2(2.25)=0.988891

The value of x4 is,

x4=x3+h=2.25+0.75=3

The value of the function at x4=3 is,

f(3)=1e2(3)=0.997521

Thus, the value of the integral is,

03(1e2x)dx=h2[f(x0)+2(f(x1)+f(x2)+f(x3))+f(x4)]=0.752[0+2(0.77687+0.950213+0.997521)+0.997521]=2.411051

Percentage error is,

% error=|exact value  numerical valueexact value|×100=|2.5012392.4110512.501239|×100=3.61%

Therefore, the value of the integral when n=2 is 03(1e2x)dx=2.17346 with percent relative error 13.10% and the value of the integral when n=4 is 03(1e2x)dx=2.411051 with percent relative error is 3.61%

(d)

Expert Solution
Check Mark
To determine

To calculate: The value of the integral 03(1e2x)dx with the help of single application version of the Simpson’s 13rd rule.

Answer to Problem 2P

Solution:

03(1e2x)dx=2.399186 with the percent relative error 4.08%

Explanation of Solution

Given Information:

The integral, 03(1e2x)dx

The exact value of the integral 03(1e2x)dx=2.501239

Formula used:

Single application version of Simpson’s 13rd rule: If I=abf(x)dx any integral, then the value of the integral is

I=h3[f(x0)+4f(x1)+f(x2)].

Here, h=ban is the step size and xi+1=xi+h ; i=0,1,2,...

Percentage error is,

% error=|exact value  numerical valueexact value|×100

Calculation:

Consider the integral,

I=03(1e2x)dx

Here, the function is,

f(x)=1e2x

Single application version of Simpson’s 13rd rule is,

I=h3[f(x0)+4f(x1)+f(x2)]

Here, n=2,

h=302=1.5

Here, x0=0

The value of the function at x0=0 is,

f(0)=1e2(0)=0

The value of x1 is,

x1=x0+h=0+1.5=1.5

The value of the function at x1=1.5 is,

f(1.5)=1e2(1.5)=0.950213

The value of x2 is,

x2=x1+h=1.5+1.5=3

The value of the function at x2=3,

f(3)=1e2(3)=0.997521

Thus, the value of the integral is,

0π2(1e2x)dx=h3[f(x0)+4f(x1)+f(x2)]=1.53[0+4(0.95213)+0.997521]=2.399186

Percentage error is,

% error=|exact value  numerical valueexact value|×100=|2.5012392.3991862.501239|×100=4.08%

Therefore, the value of the integral when n=2 is 03(1e2x)dx=2.399186 with the percent relative error 4.08%

(e)

Expert Solution
Check Mark
To determine

To calculate: The value of the integral 03(1e2x)dx with the help of multiple application version of the Simpson’s 13rd rule.

Answer to Problem 2P

Solution:

03(1e2x)dx=2.490248 with percent relative error 0.44%

Explanation of Solution

Given Information:

The integral, 03(1e2x)dx

The exact value of the integral 03(1e2x)dx=2.501239

Formula used:

Multiple application version of Simpson’s 13rd rule: If I=abf(x)dx any integral, then the value of the integral is

I=h3[f(x0)+4i=1,3,5,...n1f(xi)+2j=2,4,6,...n2f(xj)+f(xn)].

Here, h=ban is the step size and xi+1=xi+h ; i=0,1,2,...

Percentage error is,

% error=|exact value  numerical valueexact value|×100

Calculation:

Consider the integral,

I=03(1e2x)dx

Here, the function is,

f(x)=1e2x

Multiple application version of Simpson’s 13rd rule is,

I=h3[f(x0)+4i=1,3,5,...n1f(xi)+2j=2,4,6,...n2f(xj)+f(xn)].

When n=4,

h=304=0.75

Here, x0=0

The value of the function at x0=0 is,

f(0)=1e2(0)=0

The value of x1 is,

x1=x0+h=0+0.75=0.75

The value of the function at x1=0.75 is,

f(0.75)=1e2(0.75)=0.77687

The value of x2 is,

x2=x1+h=0.75+0.75=1.5

The value of the function at x2=1.5,

f(1.5)=1e2(1.5)=0.950213

The value of x3 is,

x3=x2+h=1.50+0.75=2.25

The value of the function at x3=2.25 is,

f(2.25)=1e2(2.25)=0.988891

The value of x4 is,

x4=x3+h=2.25+0.75=3

The value of the function at x4=3 is,

f(3)=1e2(3)=0.997521

Thus, the value of the integral is,

03(1e2x)dx=h3[f(x0)+4(f(x1)+f(x3))+2f(x2)+f(x4)]=0.753[0+4(0.77687+0.988891)+2(0.950213)+0.997521]=2.490248

Percentage error is,

% error=|exact value  numerical valueexact value|×100=|2.5012392.4902482.501239|×100=0.44%

Therefore, the value of the integral when n=4 is 03(1e2x)dx=2.490248 with percent relative error 0.44%

(f)

Expert Solution
Check Mark
To determine

To calculate: The value of the integral 03(1e2x)dx with the help of single applicationversion of the Simpson’s 38th rule.

Answer to Problem 2P

Solution:

The value of the integral 03(1e2x)dx=2.451213 with percent relative error 2.00%

Explanation of Solution

Given Information:

The integral, 03(1e2x)dx

The exact value of the integral 03(1e2x)dx=2.501239

Formula used:

Single application version of Simpson’s 38th rule: If I=abf(x)dx any integral, then the value of the integral is

I=3h8[f(x0)+3(f(x1)+f(x2))+f(x3)].

Here, h=ban is the step size and xi+1=xi+h ; i=0,1,2,...

Percentage error is,

% error=|exact value  numerical valueexact value|×100

Calculation:

Consider the integral,

I=03(1e2x)dx

Here, the function is,

f(x)=1e2x

Single application version of Simpson’s 38th rule is,

I=3h8[f(x0)+3(f(x1)+f(x2))+f(x3)]

Here, n=3,

h=303=1

Here, x0=0

The value of the function at x0=0 is,

f(0)=1e2(0)=1

The value of x1 is,

x1=x0+h=0+1=1

The value of the function at x1=1 is,

f(1)=1e2(1)=0.864665

The value of x2 is,

x2=x1+h=1+1=2

The value of the function at x2=2,

f(2)=1e2(2)=0.981684

The value of x3 is,

x3=x2+h=2+1=3

The value of the function at x3=3,

f(3)=1e2(3)=0.997521

Thus, the value of the integral is,

03(1e2x)dx=3h8[f(x0)+3(f(x1)+f(x2))+f(x3)]=3(1)8[0+3(0.864665+0.981684)+0.997521]=2.451213

Percentage error is,

% error=|exact value  numerical valueexact value|×100=|2.5012392.4512132.501239|×100=2.00%

Therefore, the value of the integral when n=3 is 03(1e2x)dx=2.451213 with percent relative error 2.00%

(g)

Expert Solution
Check Mark
To determine

To calculate: The value of the integral 03(1e2x)dx with the help of multiple application version of the Simpson’s 38th rule with n=5.

Answer to Problem 2P

Solution:

The value of the integral 03(1e2x)dx=2.495933 with percent relative error 0.21%

Explanation of Solution

Given Information:

The integral, 03(1e2x)dx

The exact value of the integral 03(1e2x)dx=2.501239

Formula used:

Multiple application version of Simpson’s 38th rule for n=5: If I=abf(x)dx any integral, then the value of the integral is

I=Simpson's 13rd rule for first two segment + Simpson's 38th rule for last three segment.

Single application version of Simpson’s 13rd rule: If I=abf(x)dx any integral, then the value of the integral is

I=h3[f(x0)+4f(x1)+f(x2)].

Single application of Simpson’s 38th rule: If I=abf(x)dx any integral, then the value of the integral is

I=3h8[f(x0)+3(f(x1)+f(x2))+f(x3)].

Here, h=ban is the step size and xi+1=xi+h ; i=0,1,2,...

Percentage error is,

% error=|exact value  numerical valueexact value|×100

Calculation:

Consider the integral,

I=03(1e2x)dx

Here, the function is,

f(x)=1e2x

Multiple application version of Simpson’s 38th rule for n=5: If I=abf(x)dx any integral, then the value of the integral is

I=Simpson's 13rd rule for first two segment + Simpson's 38th rule for last three segment.

Here, n=5,

h=305=0.6

Here, x0=0

The value of the function at x0=0 is,

f(0)=1e2(0)=0

The value of x1 is,

x1=x0+h=0+0.6=0.6

The value of the function at x1=0.6 is,

f(0.6)=1e2(0.6)=0.698806

The value of x2 is,

x2=x1+h=0.6+0.6=1.2

The value of the function at x2=1.2,

f(1.2)=1e2(1.2)=0.909282

The value of x3 is,

x3=x2+h=1.2+0.6=1.8

The value of the function at x3=1.8,

f(1.8)=1e2(1.8)=0.972676

The value of x4 is,

x4=x3+h=1.8+0.6=2.4

The value of the function at x4=2.4,

f(2.4)=1e2(2.4)=0.99177

The value of x5 is,

x5=x4+h=2.4+0.6=3

The value of the function at x5=3,

f(3)=1e2(3)=0.997521

Thus, the value of the integral is,

03(1e2x)dx=h3[f(x0)+4f(x1)+f(x2)]+3h8[f(x2)+3(f(x3)+f(x4))+f(x5)]=0.63[0+4(0.698806)+0.909282]+3(0.6)8[0.99282+3(0.972676+0.99177)+0.997521]=0.740901+1.755032=2.495933

Percentage error is,

% error=|exact value  numerical valueexact value|×100=|2.5012392.495332.501239|×100=0.21%

Therefore, the value of the integral when n=3 is 03(1e2x)dx=2.495933 with percent relative error 0.21%

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated
Text book image
Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education
Text book image
Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Basic Technical Mathematics
Advanced Math
ISBN:9780134437705
Author:Washington
Publisher:PEARSON
Text book image
Topology
Advanced Math
ISBN:9780134689517
Author:Munkres, James R.
Publisher:Pearson,
Numerical Integration Introduction l Trapezoidal Rule Simpson's 1/3 Rule l Simpson's 3/8 l GATE 2021; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=zadUB3NwFtQ;License: Standard YouTube License, CC-BY