BuyFind

Single Variable Calculus: Concepts...

4th Edition
James Stewart
Publisher: Cengage Learning
ISBN: 9781337687805
BuyFind

Single Variable Calculus: Concepts...

4th Edition
James Stewart
Publisher: Cengage Learning
ISBN: 9781337687805

Solutions

Chapter 2.2, Problem 24E
To determine

To calculate: The limx09x5xx . Also confirm the result graphically.

Expert Solution

Answer to Problem 24E

  limx09x5xx=0.588 .

Explanation of Solution

Given information:

Given limit as limx09x5xx

Consider the limits as, limx09x5xx

Since, ax=1+xlna+(xlna)22!+(xlna)33!+...

Hence,

   lim x0 9 x 5 x x = lim x0 1+xln9+ ( xln9 ) 2 2! + ( xln9 ) 3 3! +...( 1+xln5+ ( xln5 ) 2 2! + ( xln5 ) 3 3! +... ) x

   = lim x0 1+xln9+ ( xln9 ) 2 2! + ( xln9 ) 3 3! +...1xln5 ( xln5 ) 2 2! ( xln5 ) 3 3! ... x

   = lim x0 ( xln9xln5 )+ 1 2 ( ( xln9 ) 2 ( xln5 ) 2 )+ 1 6 ( ( xln9 ) 3 ( xln5 ) 3 )+... x

   = lim x0 x( ( ln9ln5 )+ x 2 ( ( ln9 ) 2 ( ln5 ) 2 )+ x 2 6 ( ( ln9 ) 3 ( ln5 ) 3 )+... ) x

   = lim x0 ( ( ln9ln5 )+ x 2 ( ( ln9 ) 2 ( ln5 ) 2 )+ x 2 6 ( ( ln9 ) 3 ( ln5 ) 3 )+... )

   =ln 9 5

   =0.588

Graph of the function is,

  Single Variable Calculus: Concepts and Contexts, Enhanced Edition, Chapter 2.2, Problem 24E

Therefore, limx09x5xx=0.588

Have a homework question?

Subscribe to bartleby learn! Ask subject matter experts 30 homework questions each month. Plus, you’ll have access to millions of step-by-step textbook answers!