BuyFindarrow_forward

Finite Mathematics and Applied Cal...

7th Edition
Stefan Waner + 1 other
ISBN: 9781337274203

Solutions

Chapter
Section
BuyFindarrow_forward

Finite Mathematics and Applied Cal...

7th Edition
Stefan Waner + 1 other
ISBN: 9781337274203
Textbook Problem

In Exercises 47-54, model the data using an exponential function f ( x ) = A b x . [HINT: See Example 1.)

x 0 1 2
f ( x ) 500 1,000 2,000

To determine

To calculate: The model of following data by using the exponential function f(x)=Abx.

x 0 1 2
f(x) 500 1000 2000
Explanation

Given Information:

The data table is,

x 0 1 2
f(x) 500 1000 2000

Calculation:

Consider the following data table,

x 0 1 2
f(x) 500 1000 2000

From the data table it can be observed that for every time value of x increases by 1, the value of f(x) is multiplied by 2. This suggest that f(x) is an exponential function fitting data.

Use the formula of exponential function,

f(x)=Abx

Substitute x=0 in the equation f(x)=Abx.

f(0)=Ab0

As f(0)=500 and b0=1

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-2.1 P-11ESect-2.1 P-12ESect-2.1 P-13ESect-2.1 P-14ESect-2.1 P-15ESect-2.1 P-16ESect-2.1 P-17ESect-2.1 P-18ESect-2.1 P-19ESect-2.1 P-20ESect-2.1 P-21ESect-2.1 P-22ESect-2.1 P-23ESect-2.1 P-24ESect-2.1 P-25ESect-2.1 P-26ESect-2.1 P-27ESect-2.1 P-28ESect-2.1 P-29ESect-2.1 P-30ESect-2.1 P-31ESect-2.1 P-32ESect-2.1 P-33ESect-2.1 P-34ESect-2.1 P-35ESect-2.1 P-36ESect-2.1 P-37ESect-2.1 P-38ESect-2.1 P-39ESect-2.1 P-40ESect-2.1 P-41ESect-2.1 P-42ESect-2.1 P-43ESect-2.1 P-44ESect-2.1 P-45ESect-2.1 P-46ESect-2.1 P-47ESect-2.1 P-48ESect-2.1 P-49ESect-2.1 P-50ESect-2.1 P-51ESect-2.1 P-52ESect-2.1 P-53ESect-2.1 P-54ESect-2.1 P-55ESect-2.1 P-56ESect-2.1 P-57ESect-2.1 P-58ESect-2.1 P-59ESect-2.1 P-60ESect-2.1 P-61ESect-2.1 P-62ESect-2.2 P-1ESect-2.2 P-2ESect-2.2 P-3ESect-2.2 P-4ESect-2.2 P-5ESect-2.2 P-6ESect-2.2 P-7ESect-2.2 P-8ESect-2.2 P-9ESect-2.2 P-10ESect-2.2 P-11ESect-2.2 P-12ESect-2.2 P-13ESect-2.2 P-14ESect-2.2 P-15ESect-2.2 P-16ESect-2.2 P-17ESect-2.2 P-18ESect-2.2 P-19ESect-2.2 P-20ESect-2.2 P-21ESect-2.2 P-22ESect-2.2 P-23ESect-2.2 P-24ESect-2.2 P-25ESect-2.2 P-26ESect-2.2 P-27ESect-2.2 P-28ESect-2.2 P-29ESect-2.2 P-30ESect-2.2 P-31ESect-2.2 P-32ESect-2.2 P-33ESect-2.2 P-34ESect-2.2 P-35ESect-2.2 P-36ESect-2.2 P-37ESect-2.2 P-38ESect-2.2 P-39ESect-2.2 P-40ESect-2.2 P-41ESect-2.2 P-42ESect-2.2 P-43ESect-2.2 P-44ESect-2.2 P-45ESect-2.2 P-46ESect-2.2 P-47ESect-2.2 P-48ESect-2.2 P-49ESect-2.2 P-50ESect-2.2 P-51ESect-2.2 P-52ESect-2.2 P-53ESect-2.2 P-54ESect-2.2 P-55ESect-2.2 P-56ESect-2.2 P-57ESect-2.2 P-58ESect-2.2 P-59ESect-2.2 P-60ESect-2.2 P-61ESect-2.2 P-62ESect-2.2 P-63ESect-2.2 P-64ESect-2.2 P-65ESect-2.2 P-66ESect-2.2 P-67ESect-2.2 P-68ESect-2.2 P-69ESect-2.2 P-70ESect-2.2 P-71ESect-2.2 P-72ESect-2.2 P-73ESect-2.2 P-74ESect-2.2 P-75ESect-2.2 P-76ESect-2.2 P-77ESect-2.2 P-78ESect-2.2 P-79ESect-2.2 P-80ESect-2.2 P-81ESect-2.2 P-82ESect-2.2 P-83ESect-2.2 P-84ESect-2.2 P-85ESect-2.2 P-86ESect-2.2 P-87ESect-2.2 P-88ESect-2.2 P-89ESect-2.2 P-90ESect-2.2 P-91ESect-2.2 P-92ESect-2.2 P-93ESect-2.2 P-94ESect-2.2 P-95ESect-2.2 P-96ESect-2.2 P-97ESect-2.2 P-98ESect-2.2 P-99ESect-2.2 P-100ESect-2.2 P-101ESect-2.2 P-102ESect-2.2 P-103ESect-2.2 P-104ESect-2.2 P-105ESect-2.2 P-106ESect-2.2 P-107ESect-2.2 P-108ESect-2.2 P-109ESect-2.2 P-110ESect-2.3 P-1ESect-2.3 P-2ESect-2.3 P-3ESect-2.3 P-4ESect-2.3 P-5ESect-2.3 P-6ESect-2.3 P-7ESect-2.3 P-8ESect-2.3 P-9ESect-2.3 P-10ESect-2.3 P-11ESect-2.3 P-12ESect-2.3 P-13ESect-2.3 P-14ESect-2.3 P-15ESect-2.3 P-16ESect-2.3 P-17ESect-2.3 P-18ESect-2.3 P-19ESect-2.3 P-20ESect-2.3 P-21ESect-2.3 P-22ESect-2.3 P-23ESect-2.3 P-24ESect-2.3 P-25ESect-2.3 P-26ESect-2.3 P-27ESect-2.3 P-28ESect-2.3 P-29ESect-2.3 P-30ESect-2.3 P-31ESect-2.3 P-32ESect-2.3 P-33ESect-2.3 P-34ESect-2.3 P-35ESect-2.3 P-36ESect-2.3 P-37ESect-2.3 P-38ESect-2.3 P-39ESect-2.3 P-40ESect-2.3 P-41ESect-2.3 P-42ESect-2.3 P-43ESect-2.3 P-44ESect-2.3 P-45ESect-2.3 P-46ESect-2.3 P-47ESect-2.3 P-48ESect-2.3 P-49ESect-2.3 P-50ESect-2.3 P-51ESect-2.3 P-52ESect-2.3 P-53ESect-2.3 P-54ESect-2.3 P-55ESect-2.3 P-56ESect-2.3 P-57ESect-2.3 P-58ESect-2.3 P-59ESect-2.3 P-60ESect-2.3 P-61ESect-2.3 P-62ESect-2.3 P-63ESect-2.3 P-64ESect-2.3 P-65ESect-2.3 P-66ESect-2.3 P-67ESect-2.3 P-68ESect-2.3 P-69ESect-2.3 P-70ESect-2.3 P-71ESect-2.3 P-72ESect-2.3 P-73ESect-2.3 P-74ESect-2.3 P-75ESect-2.3 P-76ESect-2.3 P-77ESect-2.4 P-1ESect-2.4 P-2ESect-2.4 P-3ESect-2.4 P-4ESect-2.4 P-5ESect-2.4 P-6ESect-2.4 P-7ESect-2.4 P-8ESect-2.4 P-9ESect-2.4 P-10ESect-2.4 P-11ESect-2.4 P-12ESect-2.4 P-13ESect-2.4 P-14ESect-2.4 P-15ESect-2.4 P-16ESect-2.4 P-17ESect-2.4 P-18ESect-2.4 P-19ESect-2.4 P-20ESect-2.4 P-21ESect-2.4 P-22ESect-2.4 P-23ESect-2.4 P-24ESect-2.4 P-25ESect-2.4 P-26ESect-2.4 P-27ESect-2.4 P-28ESect-2.4 P-29ESect-2.4 P-30ESect-2.4 P-31ESect-2.4 P-33ESect-2.4 P-34ESect-2.4 P-35ESect-2.4 P-36ESect-2.4 P-37ESect-2.4 P-38ESect-2.4 P-39ESect-2.4 P-40ESect-2.4 P-41ESect-2.4 P-42ESect-2.4 P-43ESect-2.4 P-44ECh-2 P-1RECh-2 P-2RECh-2 P-3RECh-2 P-4RECh-2 P-5RECh-2 P-6RECh-2 P-7RECh-2 P-8RECh-2 P-9RECh-2 P-10RECh-2 P-11RECh-2 P-12RECh-2 P-13RECh-2 P-14RECh-2 P-15RECh-2 P-16RECh-2 P-17RECh-2 P-18RECh-2 P-19RECh-2 P-20RECh-2 P-21RECh-2 P-22RECh-2 P-23RECh-2 P-24RECh-2 P-25RECh-2 P-26RECh-2 P-27RECh-2 P-28RECh-2 P-29RECh-2 P-30RECh-2 P-31RECh-2 P-32RECh-2 P-33RECh-2 P-35RECh-2 P-36RECh-2 P-37RECh-2 P-38RECh-2 P-39RECh-2 P-40RECh-2 P-41RECh-2 P-42RECh-2 P-43RECh-2 P-44RECh-2 P-45RECh-2 P-50RE

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

In Exercises 63 and 64, determine whether the statement is true or false. If it is true, explain why it is true...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Evaluate the integrals in Problems 5-28. Check your answers by differentiating. 15.

Mathematical Applications for the Management, Life, and Social Sciences

Solve the following problems and reduce to lowest terms. 16.

Contemporary Mathematics for Business & Consumers

Show that if p is an nth-degree polynomial, then p(x+1)=i=0np(i)(x)i!

Single Variable Calculus: Early Transcendentals

True or False: If f(x) = F(x), then baf(x)dx=F(b)F(a).

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th