General, Organic, and Biological Chemistry
General, Organic, and Biological Chemistry
7th Edition
ISBN: 9781285853918
Author: H. Stephen Stoker
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 23, Problem 23.45EP

(a)

Interpretation Introduction

Interpretation: To identify the substances ATP, CoA–SH, FAD, and NAD+ that contains two ribose subunits within their structure

Concept introduction: The sum of various chemical reactions occurring in the human body is called metabolism and the reactions individually are known as metabolic reactions. During these metabolic reactions, the various metabolic intermediates are formed for the short time to complete the reactions.ATP,FAD,NAD+ and CoA–SH are examples of a metabolic intermediate.

ATP is a nucleotide which provides energy for the completion of various metabolic reactions occurring in our human body. The structure of ATP consists of adenine base, ribose sugar unit and the three phosphate group connected to each other by phosphoanhydride bonds. The structure of ATP is:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.45EP , additional homework tip  1

Coenzyme A (CoA) is a coenzyme which is utilized in various metabolic reactions. The functions of coenzyme A include oxidation of pyruvate in the citric cycle and fatty acid oxidation. The structure of Coenzyme A (CoA) is:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.45EP , additional homework tip  2

Flavin adenine dinucleotide exists in two forms: oxidized form (FAD) and reduced form (FADH2). The main function of flavin adenine dinucleotide is to act as an oxidizing agent and used by the cell in oxidation reactions like oxidation of fatty acid. The structure of FAD is:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.45EP , additional homework tip  3

Nicotinamide adenine dinucleotide (NAD+) is employed as an oxidizing agent in various reactions like oxidation of secondary alcohol into a ketone. Its structure consists of three subunits: nicotinamide, ribose, and ADP. The structure of NAD+ is:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.45EP , additional homework tip  4

Here,R=Ribose-ADP.

(a)

Expert Solution
Check Mark

Answer to Problem 23.45EP

NAD+ consists of two ribose unit in its structure.

Explanation of Solution

The structure of NAD+ consists of three subunits: nicotinamide, ribose, and ADP. ADP is a nucleotide which further consists of adenine base, ribose sugar unit and the two phosphate group connected to each other by phosphoanhydride bonds.

The structure of NAD+ is:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.45EP , additional homework tip  5

Here,R=Ribose-ADP.

The structure of ATP is:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.45EP , additional homework tip  6

The structure of coenzyme A (CoA) is:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.45EP , additional homework tip  7

The structure of FAD is:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.45EP , additional homework tip  8

The ribose subunit in each of the metabolic intermediate is highlighted. Here, the structure of NAD+ consists of two ribose units Hence the correct answer is NAD+ ATP and FAD consists of only one ribose unit and coenzyme A (CoA) consists of phosphorylated ribose.

(b)

Interpretation Introduction

Interpretation: To identify the substances ATP, CoA–SH, FAD, and NAD+ that contains two phosphate subunits within their structure

Concept introduction: The sum of various chemical reactions occurring in the human body is called metabolism and the reactions individually are known as metabolic reactions. During these metabolic reactions, the various metabolic intermediates are formed for the short time to complete the reactions. ATP, FAD,NAD+ and CoA–SH are examples of a metabolic intermediate.

ATP is a nucleotide which provides energy for the completion of various metabolic reactions occurring in our human body. The structure of ATP consists of adenine base, ribose sugar unit and the three phosphate group connected to each other by phosphoanhydride bonds. The structure of ATP is:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.45EP , additional homework tip  9

Coenzyme A (CoA) is a coenzyme which is utilized in various metabolic reactions. The functions of coenzyme A include oxidation of pyruvate in the citric cycle and fatty acid oxidation. The structure of Coenzyme A (CoA) is:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.45EP , additional homework tip  10

Flavin adenine dinucleotide exists in two forms: oxidized form (FAD) and reduced form (FADH2). The main function of flavin adenine dinucleotide is to act as an oxidizing agent and used by the cell in oxidation reactions like oxidation of fatty acid. The structure of FAD is:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.45EP , additional homework tip  11

Nicotinamide adenine dinucleotide (NAD+) is employed as an oxidizing agent in various reactions like oxidation of secondary alcohol into a ketone. Its structure consists of three subunits: nicotinamide, ribose, and ADP. The structure of NAD+ is:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.45EP , additional homework tip  12

Here,R=Ribose-ADP.

(b)

Expert Solution
Check Mark

Answer to Problem 23.45EP

CoA-SH, FAD and NAD+ contain two phosphate subunits in its structure.

Explanation of Solution

The structure of CoA-SH is:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.45EP , additional homework tip  13

The structure of FAD is:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.45EP , additional homework tip  14

The structure of NAD+ is:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.45EP , additional homework tip  15

Here,R=Ribose-ADP.

The structure of NAD+ consists of ADP subunit. ADP is a nucleotide which further consists of adenine base, ribose sugar unit and the two phosphate group connected to each other by phosphoanhydride bonds.

The structure of ATP is:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.45EP , additional homework tip  16

The phosphate subunit in each of the metabolic intermediate is highlighted. Here, the structure of NAD+,FAD and CoA-SH consist of two phosphate subunits Hence the correct answer is NAD+,FAD and CoA-SH. ATP consists of three phosphate subunit in its structure.

(c)

Interpretation Introduction

Interpretation: To identify the substances ATP, CoA–SH,FAD, and NAD+ that contains one adenine subunit within their structure

Concept introduction: The sum of various chemical reactions occurring in the human body is called metabolism and the reactions individually are known as metabolic reactions. During these metabolic reactions, the various metabolic intermediates are formed for the short time to complete the reactions. ATP,FAD,NAD+ and CoA–SH are examples of a metabolic intermediate.

ATP is a nucleotide which provides energy for the completion of various metabolic reactions occurring in our human body. The structure of ATP consists of adenine base, ribose sugar unit and the three phosphate group connected to each other by phosphoanhydride bonds. The structure of ATP is:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.45EP , additional homework tip  17

Coenzyme A (CoA) is a coenzyme which is utilized in various metabolic reactions. The functions of coenzyme A include oxidation of pyruvate in the citric cycle and fatty acid oxidation. The structure of Coenzyme A (CoA) is:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.45EP , additional homework tip  18

Flavin adenine dinucleotide exists in two forms: oxidized form (FAD) and reduced form (FADH2). The main function of flavin adenine dinucleotide is to act as an oxidizing agent and used by the cell in oxidation reactions like oxidation of fatty acid. The structure of FAD is:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.45EP , additional homework tip  19

Nicotinamide adenine dinucleotide (NAD+) is employed as an oxidizing agent in various reactions like oxidation of secondary alcohol into a ketone. Its structure consists of three subunits: nicotinamide, ribose, and ADP.

The structure of NAD+ is:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.45EP , additional homework tip  20

Here,R=Ribose-ADP.

(c)

Expert Solution
Check Mark

Answer to Problem 23.45EP

CoA-SH,FAD,NAD+ and ATP consists of one adenine subunits in its structure.

Explanation of Solution

The structure of CoA-SH is:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.45EP , additional homework tip  21

The structure of FAD is:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.45EP , additional homework tip  22

The structure of NAD+ is:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.45EP , additional homework tip  23

Here,R=Ribose-ADP.

ADP is a nucleotide which further consists of adenine base, ribose sugar unit and the two phosphate group.

The structure of ATP is:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.45EP , additional homework tip  24

The adenine subunit in each of the metabolic intermediate is highlighted. Here, the structure of NAD+,FAD, ATP and coenzyme A (CoA) consists of one adenine unit. Hence the correct answer is NAD+, ATP, FAD and coenzyme A (CoA)

(d)

Interpretation Introduction

Interpretation: To identify the substances ATP, CoA–SH, FAD, and NAD+ that contains four different kinds of subunits within their structure

Concept introduction: The sum of various chemical reactions occurring in the human body is called metabolism and the reactions individually are known as metabolic reactions. During these metabolic reactions, the various metabolic intermediates are formed for the short time to complete the reactions. ATP,FAD,NAD+ and CoA–SH are examples of a metabolic intermediate.

ATP is a nucleotide which provides energy for the completion of various metabolic reactions occurring in our human body. The structure of ATP consists of adenine base, ribose sugar unit and the three phosphate group connected to each other by phosphoanhydride bonds. The structure of ATP is:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.45EP , additional homework tip  25

Coenzyme A (CoA) is a coenzyme which is utilized in various metabolic reactions. The functions of coenzyme A include oxidation of pyruvate in the citric cycle and fatty acid oxidation. The structure of Coenzyme A (CoA) is:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.45EP , additional homework tip  26

Flavin adenine dinucleotide exists in two forms: oxidized form (FAD) and reduced form (FADH2). The main function of flavin adenine dinucleotide is to act as an oxidizing agent and used by the cell in oxidation reactions like oxidation of fatty acid. The structure of FAD is:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.45EP , additional homework tip  27

Nicotinamide adenine dinucleotide (NAD+) is employed as an oxidizing agent in various reactions like oxidation of secondary alcohol into a ketone. Its structure consists of three subunits: nicotinamide, ribose, and ADP. The structure of NAD+ is:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.45EP , additional homework tip  28

Here,R=Ribose-ADP.

(d)

Expert Solution
Check Mark

Answer to Problem 23.45EP

CoA-SH,FAD, and NAD+ contain four different kinds of subunits in its structure.

Explanation of Solution

The structure of CoA-SH is:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.45EP , additional homework tip  29

The structure of FAD is:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.45EP , additional homework tip  30

The structure of NAD+ is:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.45EP , additional homework tip  31

Here,R=Ribose-ADP.

NAD+ consists of three subunits: nicotinamide, ribose, and ADP. The ADP further consists of the adenine base, ribose sugar unit, and the two phosphate group. Hence there are four different groups in NAD+.

The structure of ATP is:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.45EP , additional homework tip  32

The different kinds of the subunits in metabolic intermediate are highlighted. Here, the structure of NAD+,FAD and CoA-SH consists of four different kinds of subunits Hence the correct answer is NAD+,FAD and CoA-SH. ATP consists of three different kinds of the subunit in its structure.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
All are metabolic pathways for glucose catabolism (metabolism) EXCEPT:     Question 70 options:   A)  Embden-Myerhof pathway   B)  Glycogenesis   C)  Glyconeogenesis   D)  Hexose monophosphate shunt
Glucose-6-phosphate detours to the hexose monophosphate shunt pathway in erythrocytes because:     Question 73 options:   A)  They lack mitochondria making them incapable of the TCA cycle   B)  They lack endoplasmic reticulum making them incapable of the TCA cycle   C)  Erythrocytes have no energy needs   D)  Erythrocytes utilize glucose directly for energy
NAD+ and FAD+ are?

Chapter 23 Solutions

General, Organic, and Biological Chemistry

Ch. 23.3 - Which of the following statements concerning...Ch. 23.4 - Prob. 1QQCh. 23.4 - Prob. 2QQCh. 23.5 - Prob. 1QQCh. 23.5 - Prob. 2QQCh. 23.5 - Prob. 3QQCh. 23.6 - Which of the following occurs in the second stage...Ch. 23.6 - Which of the following stages in the biochemical...Ch. 23.6 - Prob. 3QQCh. 23.7 - Prob. 1QQCh. 23.7 - Prob. 2QQCh. 23.7 - Prob. 3QQCh. 23.7 - How many NADH and FADH2 molecules are produced,...Ch. 23.7 - Which of the following citric acid cycle...Ch. 23.7 - In which of the following listings of citric acid...Ch. 23.8 - Which of the following is a fuel for the electron...Ch. 23.8 - Prob. 2QQCh. 23.8 - What is the substrate that initially interacts...Ch. 23.8 - The number of fixed enzyme sites in the electron...Ch. 23.8 - In which of the following listings of electron...Ch. 23.8 - Prob. 6QQCh. 23.9 - How many of the four enzyme complexes in the...Ch. 23.9 - Prob. 2QQCh. 23.9 - Prob. 3QQCh. 23.10 - Prob. 1QQCh. 23.10 - Prob. 2QQCh. 23.11 - Prob. 1QQCh. 23.11 - Prob. 2QQCh. 23.11 - Prob. 3QQCh. 23.12 - Prob. 1QQCh. 23.12 - Prob. 2QQCh. 23 - Classify anabolism and catabolism as synthetic or...Ch. 23 - Classify anabolism and catabolism as...Ch. 23 - What is a metabolic pathway?Ch. 23 - Prob. 23.4EPCh. 23 - Classify each of the following processes as...Ch. 23 - Classify each of the following processes as...Ch. 23 - Prob. 23.7EPCh. 23 - Prob. 23.8EPCh. 23 - Prob. 23.9EPCh. 23 - Indicate whether each of the following statements...Ch. 23 - Prob. 23.11EPCh. 23 - Prob. 23.12EPCh. 23 - Prob. 23.13EPCh. 23 - Prob. 23.14EPCh. 23 - Specify, by name and by number present, the...Ch. 23 - Prob. 23.16EPCh. 23 - Prob. 23.17EPCh. 23 - Prob. 23.18EPCh. 23 - Prob. 23.19EPCh. 23 - Prob. 23.20EPCh. 23 - Prob. 23.21EPCh. 23 - Prob. 23.22EPCh. 23 - Write a generalized chemical equation, containing...Ch. 23 - Prob. 23.24EPCh. 23 - Prob. 23.25EPCh. 23 - Prob. 23.26EPCh. 23 - Draw each of the following types of block diagrams...Ch. 23 - Prob. 23.28EPCh. 23 - What is the name of the B vitamin present in each...Ch. 23 - Prob. 23.30EPCh. 23 - Prob. 23.31EPCh. 23 - Prob. 23.32EPCh. 23 - Prob. 23.33EPCh. 23 - Prob. 23.34EPCh. 23 - Prob. 23.35EPCh. 23 - Prob. 23.36EPCh. 23 - Prob. 23.37EPCh. 23 - Prob. 23.38EPCh. 23 - Prob. 23.39EPCh. 23 - Prob. 23.40EPCh. 23 - Prob. 23.41EPCh. 23 - Prob. 23.42EPCh. 23 - Prob. 23.43EPCh. 23 - Prob. 23.44EPCh. 23 - Prob. 23.45EPCh. 23 - Prob. 23.46EPCh. 23 - Prob. 23.47EPCh. 23 - Prob. 23.48EPCh. 23 - Prob. 23.49EPCh. 23 - Prob. 23.50EPCh. 23 - Prob. 23.51EPCh. 23 - Prob. 23.52EPCh. 23 - Prob. 23.53EPCh. 23 - Prob. 23.54EPCh. 23 - Prob. 23.55EPCh. 23 - Prob. 23.56EPCh. 23 - Prob. 23.57EPCh. 23 - Prob. 23.58EPCh. 23 - List, by name, the four general stages of the...Ch. 23 - Prob. 23.60EPCh. 23 - Prob. 23.61EPCh. 23 - Prob. 23.62EPCh. 23 - Prob. 23.63EPCh. 23 - Prob. 23.64EPCh. 23 - Prob. 23.65EPCh. 23 - Prob. 23.66EPCh. 23 - Prob. 23.67EPCh. 23 - Prob. 23.68EPCh. 23 - Prob. 23.69EPCh. 23 - Prob. 23.70EPCh. 23 - Prob. 23.71EPCh. 23 - Prob. 23.72EPCh. 23 - Prob. 23.73EPCh. 23 - Prob. 23.74EPCh. 23 - Prob. 23.75EPCh. 23 - Prob. 23.76EPCh. 23 - Prob. 23.77EPCh. 23 - Prob. 23.78EPCh. 23 - Prob. 23.79EPCh. 23 - Prob. 23.80EPCh. 23 - Prob. 23.81EPCh. 23 - Prob. 23.82EPCh. 23 - Prob. 23.83EPCh. 23 - Prob. 23.84EPCh. 23 - Prob. 23.85EPCh. 23 - Prob. 23.86EPCh. 23 - Prob. 23.87EPCh. 23 - Prob. 23.88EPCh. 23 - Indicate whether each of the following changes...Ch. 23 - Prob. 23.90EPCh. 23 - Prob. 23.91EPCh. 23 - Prob. 23.92EPCh. 23 - Which electron carrier shuttles electrons between...Ch. 23 - Prob. 23.94EPCh. 23 - Prob. 23.95EPCh. 23 - Prob. 23.96EPCh. 23 - Prob. 23.97EPCh. 23 - Prob. 23.98EPCh. 23 - Prob. 23.99EPCh. 23 - Prob. 23.100EPCh. 23 - Put the following substances in the correct order...Ch. 23 - Prob. 23.102EPCh. 23 - Prob. 23.103EPCh. 23 - Prob. 23.104EPCh. 23 - Prob. 23.105EPCh. 23 - Prob. 23.106EPCh. 23 - Prob. 23.107EPCh. 23 - Prob. 23.108EPCh. 23 - Prob. 23.109EPCh. 23 - Prob. 23.110EPCh. 23 - How many protons cross the inner mitochondrial...Ch. 23 - How many protons cross the inner mitochondrial...Ch. 23 - Prob. 23.113EPCh. 23 - Prob. 23.114EPCh. 23 - Prob. 23.115EPCh. 23 - Prob. 23.116EPCh. 23 - Prob. 23.117EPCh. 23 - Prob. 23.118EPCh. 23 - Prob. 23.119EPCh. 23 - Prob. 23.120EPCh. 23 - Prob. 23.121EPCh. 23 - Prob. 23.122EPCh. 23 - Prob. 23.123EPCh. 23 - Prob. 23.124EPCh. 23 - Prob. 23.125EPCh. 23 - Prob. 23.126EPCh. 23 - Prob. 23.127EPCh. 23 - Prob. 23.128EPCh. 23 - Indicate whether or not each of the following B...Ch. 23 - Prob. 23.130EPCh. 23 - Prob. 23.131EPCh. 23 - Prob. 23.132EP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Organic And Biological Chemistry
Chemistry
ISBN:9781305081079
Author:STOKER, H. Stephen (howard Stephen)
Publisher:Cengage Learning,
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Text book image
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning