An early (incorrect) model of the hydrogen atom, suggested by J. J. Thomson, proposed that a positive cloud of charge +e was uniformly distributed throughout the volume of a sphere of radius R, with the electron an equal-magnitude negative point charge -e at the center. (a) Using Gauss’s law, show that the electron would be in equilibrium at the center and, if displaced from the center a distance r < R, would experience a restoring force of the form F = -Kr, where K is a constant. (b) Show that K = kee2/R3. (c) Find an expression for the frequency f of simple harmonic oscillations that an electron of mass me would undergo if displaced a small distance (<R) from the center and released. (d) Calculate a numerical value for R that would result in a frequency of 2.47 x 1015 Hz, the frequency of the light radiated in the most intense line in the hydrogen spectrum.

University Physics Volume 1
18th Edition
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:William Moebs, Samuel J. Ling, Jeff Sanny
Chapter6: Applications Of Newton's Laws
Section: Chapter Questions
Problem 74P: In the simple Bohr model of the ground state of the hydrogen atom, the electron travels in a...
icon
Related questions
Question

An early (incorrect) model of the hydrogen atom, suggested by J. J. Thomson, proposed that a positive cloud of charge +e was uniformly distributed throughout the volume of a sphere of radius R, with the electron an equal-magnitude negative point charge -e at the center. (a) Using Gauss’s law, show that the electron would be in equilibrium at the center and, if displaced from the center a distance r < R, would experience a restoring force of the form F = -Kr, where K is a constant. (b) Show that K = kee2/R3. (c) Find an expression for the frequency f of simple harmonic oscillations that an electron of mass me would undergo if displaced a small distance (<R) from the center and released. (d) Calculate a numerical value for R that would result in a frequency of 2.47 x 1015 Hz, the frequency of the light radiated in the most intense line in the hydrogen spectrum.

Expert Solution
steps

Step by step

Solved in 4 steps with 6 images

Blurred answer
Knowledge Booster
Hydrogen Atom
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
University Physics Volume 2
University Physics Volume 2
Physics
ISBN:
9781938168161
Author:
OpenStax
Publisher:
OpenStax