Physics for Scientists and Engineers
Physics for Scientists and Engineers
10th Edition
ISBN: 9781337553278
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 24, Problem 42AP

A Geiger–Mueller tube is a radiation detector that consists of a closed, hollow, metal cylinder (the cathode) of inner radius ra and a coaxial cylindrical wire (the anode) of radius rb (Fig. P24.42a). The charge per unit length on the anode is λ, and the charge per unit length on the cathode is −λ. A gas fills the space between the electrodes. When the tube is in use (for example, in measuring radioactivity from fruit in Fig. P24.42b) and a high-energy elementary particle passes through this space, it can ionize an atom of the gas. The strong electric field makes the resulting ion and electron accelerate in opposite directions. They strike other molecules of the gas to ionize them, producing an avalanche of electrical discharge. The pulse of electric current between the wire and the cylinder is counted by an external circuit. (a) Show that the magnitude of the electric potential difference between the wire and the cylinder is

Δ V 2 k e λ ln ( r a r b )

(b) Show that the magnitude of the electric field in the space between cathode and anode is

E = Δ V ln ( r a / r b ) ( 1 r )

where r is the distance from the axis of the anode to the point where the field is to be calculated.

Figure P24.42

Chapter 24, Problem 42AP, A GeigerMueller tube is a radiation detector that consists of a closed, hollow, metal cylinder (the

Blurred answer
Students have asked these similar questions
(a) Find the electric field at x = 5.00 cm in (a), given that q = 1.00 μC .          (b) At what position between 3.00 and 8.00 cm is the total electric field the same as that for –2q alone? (c) Can the electric field be zero anywhere between 0.00 and 8.00 cm?      (d) At very large positive or negative values of x, the electric field approaches zero in both (a) and (b). In which does it most rapidlyapproach zero and why?                                                                                (e) At what position to the right of 11.0 cm is the total electric field zero, other than at infinity?(Hint: A graphing calculator can yield considerable insight in this problem.)
The figure below is a section of a conducting rod of radius R1 = 1.30 mm and length L = 11.00 m inside a thick-walled coaxial conducting cylindrical shell of radius R2 = 10.0R1 and the (same) length L. The net charge on the rod is Q1 = +4.60 ✕ 10−12 C; that on the shell is Q2 = −4.00Q1.  (a) What is the magnitude E of the electric field at a radial distance of r = 3.50R2? _________N/C(b) What is the direction of the electric field at that radial distance? ---Select---: inward or outward(c) What is the magnitude E of the electric field at a radial distance of r = 3.50R1? ___________N/C
(a) Using the symmetry of the arrangement, determine the direction of the electric field at the center of the square in Figure 18.53, given that qa=qb=1.00 μC and qc=qd=+1.00 μC . (b) Calculate the magnitude of the electric field at the location of q , given that the square is 5.00 cm on a side.

Chapter 24 Solutions

Physics for Scientists and Engineers

Ch. 24 - Three positive charges are located at the corners...Ch. 24 - Two point charges Q1 = +5.00 nC and Q2 = 3.00 nC...Ch. 24 - You are working on a laboratory device that...Ch. 24 - Your roommate is having trouble understanding why...Ch. 24 - Four point charges each having charge Q are...Ch. 24 - The two charges in Figure P24.12 are separated by...Ch. 24 - Show that the amount of work required to assemble...Ch. 24 - Two charged particles of equal magnitude are...Ch. 24 - Three particles with equal positive charges q are...Ch. 24 - Review. A light, unstressed spring has length d....Ch. 24 - Review. Two insulating spheres have radii 0.300 cm...Ch. 24 - Review. Two insulating spheres have radii r1 and...Ch. 24 - How much work is required to assemble eight...Ch. 24 - Four identical particles, each having charge q and...Ch. 24 - It is shown in Example 24.7 that the potential at...Ch. 24 - Figure P24.22 represents a graph of the electric...Ch. 24 - Figure P24.23 shows several equipotential lines,...Ch. 24 - An electric field in a region of space is parallel...Ch. 24 - A rod of length L (Fig. P24.25) lies along the x...Ch. 24 - For the arrangement described in Problem 25,...Ch. 24 - A wire having a uniform linear charge density is...Ch. 24 - You are a coach for the Physics Olympics team...Ch. 24 - The electric field magnitude on the surface of an...Ch. 24 - Why is the following situation impossible? A solid...Ch. 24 - A solid metallic sphere of radius a carries total...Ch. 24 - A positively charged panicle is at a distance R/2...Ch. 24 - A very large, thin, flat plate of aluminum of area...Ch. 24 - A solid conducting sphere of radius 2.00 cm has a...Ch. 24 - A spherical conductor has a radius of 14.0 cm and...Ch. 24 - A long, straight wire is surrounded by a hollow...Ch. 24 - Why is the following situation impossible? In the...Ch. 24 - On a dry winter day, you scuff your leather-soled...Ch. 24 - (a) Use the exact result from Example 24.4 to find...Ch. 24 - Why is the following situation impossible? You set...Ch. 24 - The thin, uniformly charged rod shown in Figure...Ch. 24 - A GeigerMueller tube is a radiation detector that...Ch. 24 - Review. Two parallel plates having charges of...Ch. 24 - When an uncharged conducting sphere of radius a is...Ch. 24 - A solid, insulating sphere of radius a has a...Ch. 24 - A hollow, metallic, spherical shell has exterior...Ch. 24 - For the configuration shown in Figure P24.45,...Ch. 24 - An electric dipole is located along the y axis as...Ch. 24 - A disk of radius R (Fig. P24.49) has a nonuniform...Ch. 24 - A particle with charge q is located at x = R, and...Ch. 24 - (a) A uniformly charged cylindrical shell with no...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY