Physics for Scientists and Engineers: Foundations and Connections
Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 24, Problem 79PQ

(a)

To determine

The expression for the electric field at point A located at a distance l above the mid-point of the rod.

(a)

Expert Solution
Check Mark

Answer to Problem 79PQ

The expression for the electric field at point A located at a distance l above the mid-point of the rod is Etot=(0.628)kQl2j^.

Explanation of Solution

Sketch the diagram showing the five charges.

Physics for Scientists and Engineers: Foundations and Connections, Chapter 24, Problem 79PQ

The x component of the electric field is zero based on the geometry.

Write the expression for the y component of the electric field.

    E=kqr2r^=kqr2sinθj^                                                                                                  (I)

Here, E is the electric field, k is the coulomb constant, q is the charge and r is the distance between the charge and the point.

Write the equation for the total electric field.

    Etot=E1+E2+E3+E4+E5                                                                       (II)

Conclusion:

Substitute Q5 for q, l2+l2 for r and ll2+l2 for sinθ in equation (I) to find E1.

    E1=k(Q5)(l2+l2)2ll2+l2j^=kQ102l2j^                                                                         (III)

Substitute Q5 for q, l2+l2 for r and ll2+l2 for sinθ in equation (I) to find E2.

    E2=k(Q5)(l2+(l2)2)2ll2+(l2)2j^=k(Q5)(54)l225j^=8kQ255l2j^                                                                (IV)

Substitute Q5 for q and l for r in equation (I) to find E3.

    E3=k(Q5)l2j^=kQ5l2j^                                                                                               (V)

Substitute Q5 for q, l2+l2 for r and ll2+l2 for sinθ in equation (I) to find E4.

    E4=k(Q5)(l2+(l2)2)2ll2+(l2)2j^=k(Q5)(54)l225j^=8kQ255l2j^                                                                (VI)

Substitute Q5 for q, l2+l2 for r and ll2+l2 for sinθ in equation (I) to find E5.

    E5=k(Q5)(l2+l2)2ll2+l2j^=kQ102l2j^                                                                         (VII)

Substitute equations (III), (IV), (V), (VI) and (VII) in equation (II) to find Etot.

    Etot=kQ102l2j^+8kQ255l2j^+kQ5l2j^+8kQ255l2j^+kQ102l2j^=2kQ10l2j^+16kQ255l2j^+kQ5l2=kQl2(210+16255+15)=(0.628)kQl2j^

Thus, the expression for the electric field at point A located at a distance l above the mid-point of the rod is Etot=(0.628)kQl2j^.

(b)

To determine

The electric field at point A located at a distance l above the mid-point of the rod using the exact expression.

(b)

Expert Solution
Check Mark

Answer to Problem 79PQ

The electric field at point A located at a distance l above the mid-point of the rod using the exact expression is Etot=kQ2l2j^.

Explanation of Solution

Write the exact expression for the total electric field.

    E=kqy1(l2+y2)j^                                                                                    (VIII)

Here, E is the electric field, k is the coulomb constant, q is the charge, y is the perpendicular distance between the rod and the point and l is the length of the rod.

Conclusion:

Substitute Q for q, and l for y in equation (VIII) to find Etot.

    Etot=kQl1(l2+l2)j^=kQ2l2j^

Thus, the electric field at point A located at a distance l above the mid-point of the rod using the exact expression is Etot=kQ2l2j^.

(c)

To determine

Compare the approximate result with the exact result.

(c)

Expert Solution
Check Mark

Answer to Problem 79PQ

The approximate result is 0.888 times the exact result.

Explanation of Solution

Find the ratio of the approximate result with the exact result.

    Etot,aEtot,b=(0.628)kQl2j^kQ2l2j^=(0.628)(2)=0.888

Conclusion:

Thus, the approximate result is 0.888 times the exact result.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Two infinite, nonconducting sheets of charge are parallel to each other as shown in Figure P24.56. The sheet on the left has a uniform sur- face charge density σ, and the one on the right has a uniform charge density -σ. Calculate the electric field at points (a) to the left of, (b) in between, and (c) to the right of the Figure P24.56 two sheets. (d) What If? Find the electric fields in all three regions if both sheets have positive uniform surface charge densities of value σ.
Consider a spherical shell with inner radius r1=0.40 m and outer radius r2=1.10 m. The hollow inside the shell contains no charge; and charge is distributed on the inside surface of the shell and within the shell itself, such that the electrical field inside the shell itself is everywhere outward pointing and of uniform constant magnitude 37 N/C. a) What is the charge per unit area on the inner surface at r=r1? b)What is the charge per unit volume at radius r=0.75 m (within the material of the shell)?
A uniformly charged disk sit in the yz-plane with its center at the origin. It has radius 2.5 cm and carries a total charge of 4.0 x 10 -12 C. What is the magnitude of the electricfield on the x-axis of the disk at the disk at distance x = 0.2 cm?What is the direction of the eletric field on the axis of the disk at x = 0.2 cm? (to the center or from the center)Is the magnitude of the electric field at x= 0.2 cm larger or smaller thant the electric field at 0.2 cm from an infinite sheet of charge with the same charge per unit area as the disk?What is the percent difference between the electric field produced by the finite disk and by an infinite sheet with the same charge per unit area at x = 0.4 cm?

Chapter 24 Solutions

Physics for Scientists and Engineers: Foundations and Connections

Ch. 24 - A sphere with a charge of 3.50 nC and a radius of...Ch. 24 - Is it possible for a conducting sphere of radius...Ch. 24 - Prob. 7PQCh. 24 - For each sketch of electric field lines in Figure...Ch. 24 - Prob. 9PQCh. 24 - Two large neutral metal plates, fitted tightly...Ch. 24 - Given the two charged particles shown in Figure...Ch. 24 - Prob. 12PQCh. 24 - Prob. 13PQCh. 24 - A particle with charge q on the negative x axis...Ch. 24 - Prob. 15PQCh. 24 - Figure P24.16 shows three charged particles...Ch. 24 - Figure P24.17 shows a dipole. If the positive...Ch. 24 - Find an expression for the electric field at point...Ch. 24 - Figure P24.17 shows a dipole (not drawn to scale)....Ch. 24 - Figure P24.20 shows three charged spheres arranged...Ch. 24 - Often we have distributions of charge for which...Ch. 24 - Prob. 22PQCh. 24 - A positively charged rod with linear charge...Ch. 24 - A positively charged rod of length L = 0.250 m...Ch. 24 - Prob. 25PQCh. 24 - Prob. 26PQCh. 24 - A Find an expression for the position y (along the...Ch. 24 - The electric field at a point on the perpendicular...Ch. 24 - Prob. 29PQCh. 24 - Find an expression for the magnitude of the...Ch. 24 - What is the electric field at point A in Figure...Ch. 24 - A charged rod is curved so that it is part of a...Ch. 24 - If the curved rod in Figure P24.32 has a uniformly...Ch. 24 - aA plastic rod of length = 24.0 cm is uniformly...Ch. 24 - A positively charged disk of radius R = 0.0366 m...Ch. 24 - A positively charged disk of radius R and total...Ch. 24 - A uniformly charged conducting rod of length =...Ch. 24 - Prob. 38PQCh. 24 - Prob. 39PQCh. 24 - Prob. 40PQCh. 24 - Prob. 41PQCh. 24 - Prob. 42PQCh. 24 - What are the magnitude and direction of a uniform...Ch. 24 - An electron is in a uniform upward-pointing...Ch. 24 - Prob. 45PQCh. 24 - Prob. 46PQCh. 24 - A very large disk lies horizontally and has...Ch. 24 - An electron is released from rest in a uniform...Ch. 24 - In Figure P24.49, a charged particle of mass m =...Ch. 24 - Three charged spheres are suspended by...Ch. 24 - Figure P24.51 shows four small charged spheres...Ch. 24 - Prob. 52PQCh. 24 - A uniform electric field given by...Ch. 24 - A uniformly charged ring of radius R = 25.0 cm...Ch. 24 - Prob. 55PQCh. 24 - Prob. 56PQCh. 24 - A potassium chloride molecule (KCl) has a dipole...Ch. 24 - Prob. 58PQCh. 24 - Prob. 59PQCh. 24 - Prob. 60PQCh. 24 - A total charge Q is distributed uniformly on a...Ch. 24 - A simple pendulum has a small sphere at its end...Ch. 24 - A thin, semicircular wire of radius R is uniformly...Ch. 24 - Prob. 64PQCh. 24 - Prob. 65PQCh. 24 - Prob. 66PQCh. 24 - Prob. 67PQCh. 24 - Prob. 68PQCh. 24 - A thin wire with linear charge density =0y0(14+1y)...Ch. 24 - Prob. 70PQCh. 24 - Two positively charged spheres are shown in Figure...Ch. 24 - Prob. 72PQCh. 24 - Prob. 73PQCh. 24 - Prob. 74PQCh. 24 - A conducting rod carrying a total charge of +9.00...Ch. 24 - Prob. 76PQCh. 24 - A When we find the electric field due to a...Ch. 24 - Prob. 78PQCh. 24 - Prob. 79PQCh. 24 - Prob. 80PQCh. 24 - Prob. 81PQCh. 24 - Prob. 82PQ
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY