General, Organic, and Biological Chemistry
General, Organic, and Biological Chemistry
7th Edition
ISBN: 9781285853918
Author: H. Stephen Stoker
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 25, Problem 25.26EP

(a)

Interpretation Introduction

Interpretation:

Whether “acyl CoA is a product” in the mitochondrial matrix or in the mitochondrial intermembrane space in the carnitine shuttle system associated with the β-oxidation process has to be indicated.

Concept introduction:

The fatty acids are broken down to provide energy. The breakdown of fatty acids is a three parts process. In the first part, the fatty acid is activated. In the second part, the transportation of fatty acid into the mitochondrial matrix is facilitated by a shuttle mechanism. In the third part, the fatty acid is readily oxidized, cycling through a series of four reactions. In these series of reactions, acyl CoA is degraded to acetyl CoA. This pathway is termed as the β-oxidation pathway. Acetyl CoA, FADH2, and NADH are produced in this reaction.

The first stage of fatty acid oxidation is the activation of fatty acids in the outer mitochondrial membrane. The fatty acid is activated by CoA and ATP. The activated fatty acid-CoA is called acyl CoA.

The enzymes that are needed for the oxidation of fatty acid are located in the mitochondrial matrix. Acyl CoA cannot pass through the inner mitochondrial membrane to the mitochondrial matrix because it is too large. A shuttle mechanism that involves the molecule carnitine effects the entry of acyl CoA into the mitochondrial matrix.

(b)

Interpretation Introduction

Interpretation:

Whether “acyl carnitine enters the inner mitochondrial membrane” in the mitochondrial matrix or in the mitochondrial intermembrane space in the carnitine shuttle system associated with the β-oxidation process has to be indicated.

Concept introduction:

The fatty acids are broken down to provide energy. The breakdown of fatty acids is a three parts process. In the first part, the fatty acid is activated. In the second part, the transportation of fatty acid into the mitochondrial matrix is facilitated by a shuttle mechanism. In the third part, the fatty acid is readily oxidized, cycling through a series of four reactions. In these series of reactions, acyl CoA is degraded to acetyl CoA. This pathway is termed as the β-oxidation pathway. Acetyl CoA, FADH2, and NADH are produced in this reaction.

The enzymes that are needed for the oxidation of fatty acid are located in the mitochondrial matrix. Acyl CoA cannot pass through the inner mitochondrial membrane to the mitochondrial matrix because it is too large. A shuttle mechanism that involves the molecule carnitine effects the entry of acyl CoA into the mitochondrial matrix.

(c)

Interpretation Introduction

Interpretation:

Whether “acyl carnitine is converted to carnitine” in the mitochondrial matrix or in the mitochondrial intermembrane space in the carnitine shuttle system associated with the β-oxidation process has to be indicated.

Concept introduction:

The fatty acids are broken down to provide energy. The breakdown of fatty acids is a three parts process. In the first part, the fatty acid is activated. In the second part, the transportation of fatty acid into the mitochondrial matrix is facilitated by a shuttle mechanism. In the third part, the fatty acid is readily oxidized, cycling through a series of four reactions. In these series of reactions, acyl CoA is degraded to acetyl CoA. This pathway is termed as the β-oxidation pathway. Acetyl CoA, FADH2, and NADH are produced in this reaction.

The enzymes that are needed for the oxidation of fatty acid are located in the mitochondrial matrix. Acyl CoA cannot pass through the inner mitochondrial membrane to the mitochondrial matrix because it is too large. A shuttle mechanism that involves the molecule carnitine effects the entry of acyl CoA into the mitochondrial matrix.

(d)

Interpretation Introduction

Interpretation:

Whether “coenzyme A is a product” in the mitochondrial matrix or in the mitochondrial intermembrane space in the carnitine shuttle system associated with the β-oxidation process has to be indicated.

Concept introduction:

The fatty acids are broken down to provide energy. The breakdown of fatty acids is a three parts process. In the first part, the fatty acid is activated. In the second part, the transportation of fatty acid into the mitochondrial matrix is facilitated by a shuttle mechanism. In the third part, the fatty acid is readily oxidized, cycling through a series of four reactions. In these series of reactions, acyl CoA is degraded to acetyl CoA. This pathway is termed as the β-oxidation pathway. Acetyl CoA, FADH2, and NADH are produced in this reaction.

The enzymes that are needed for the oxidation of fatty acid are located in the mitochondrial matrix. Acyl CoA cannot pass through the inner mitochondrial membrane to the mitochondrial matrix because it is too large. A shuttle mechanism that involves the molecule carnitine effects the entry of acyl CoA into the mitochondrial matrix.

Blurred answer
Students have asked these similar questions
Glucose-6-phosphate detours to the hexose monophosphate shunt pathway in erythrocytes because:     Question 73 options:   A)  They lack mitochondria making them incapable of the TCA cycle   B)  They lack endoplasmic reticulum making them incapable of the TCA cycle   C)  Erythrocytes have no energy needs   D)  Erythrocytes utilize glucose directly for energy
What products of the citric acid cycle are funneled into the electron transport chain?

Chapter 25 Solutions

General, Organic, and Biological Chemistry

Ch. 25.3 - Prob. 3QQCh. 25.4 - Prob. 1QQCh. 25.4 - Prob. 2QQCh. 25.4 - Prob. 3QQCh. 25.4 - Prob. 4QQCh. 25.4 - Prob. 5QQCh. 25.4 - Prob. 6QQCh. 25.5 - Prob. 1QQCh. 25.5 - Prob. 2QQCh. 25.5 - Prob. 3QQCh. 25.6 - Prob. 1QQCh. 25.6 - Prob. 2QQCh. 25.6 - Prob. 3QQCh. 25.6 - Prob. 4QQCh. 25.6 - Prob. 5QQCh. 25.6 - Prob. 6QQCh. 25.7 - Prob. 1QQCh. 25.7 - Prob. 2QQCh. 25.7 - Prob. 3QQCh. 25.7 - Prob. 4QQCh. 25.7 - The reducing agent needed in the process of...Ch. 25.7 - Prob. 6QQCh. 25.8 - Prob. 1QQCh. 25.8 - Prob. 2QQCh. 25.9 - Prob. 1QQCh. 25.9 - Prob. 2QQCh. 25.9 - Prob. 3QQCh. 25.9 - Prob. 4QQCh. 25.10 - Which of the following substances cannot be...Ch. 25.10 - Prob. 2QQCh. 25.10 - Which of the following processes occurs within the...Ch. 25.11 - Prob. 1QQCh. 25.11 - Prob. 2QQCh. 25.11 - Prob. 3QQCh. 25 - Indicate whether each of the following aspects of...Ch. 25 - Indicate whether each of the following aspects of...Ch. 25 - Indicate whether each of the following pairings of...Ch. 25 - Prob. 25.4EPCh. 25 - Indicate whether each of the following statements...Ch. 25 - Prob. 25.6EPCh. 25 - Prob. 25.7EPCh. 25 - What is a chylomicron?Ch. 25 - What are the products of the complete hydrolysis...Ch. 25 - What are the major products of the incomplete...Ch. 25 - Prob. 25.11EPCh. 25 - At what location are free fatty acids and...Ch. 25 - Prob. 25.13EPCh. 25 - Prob. 25.14EPCh. 25 - Prob. 25.15EPCh. 25 - Prob. 25.16EPCh. 25 - Prob. 25.17EPCh. 25 - Prob. 25.18EPCh. 25 - Prob. 25.19EPCh. 25 - Prob. 25.20EPCh. 25 - Prob. 25.21EPCh. 25 - Prob. 25.22EPCh. 25 - Prob. 25.23EPCh. 25 - Prob. 25.24EPCh. 25 - Prob. 25.25EPCh. 25 - Prob. 25.26EPCh. 25 - Prob. 25.27EPCh. 25 - Identify the oxidizing agent needed in Step 3 of a...Ch. 25 - Prob. 25.29EPCh. 25 - Prob. 25.30EPCh. 25 - Prob. 25.31EPCh. 25 - Prob. 25.32EPCh. 25 - Prob. 25.33EPCh. 25 - Prob. 25.34EPCh. 25 - Prob. 25.35EPCh. 25 - Prob. 25.36EPCh. 25 - Prob. 25.37EPCh. 25 - Prob. 25.38EPCh. 25 - Prob. 25.39EPCh. 25 - Prob. 25.40EPCh. 25 - Prob. 25.41EPCh. 25 - Prob. 25.42EPCh. 25 - How many turns of the -oxidation pathway would be...Ch. 25 - How many turns of the -oxidation pathway would be...Ch. 25 - Prob. 25.45EPCh. 25 - Prob. 25.46EPCh. 25 - Prob. 25.47EPCh. 25 - Prob. 25.48EPCh. 25 - Prob. 25.49EPCh. 25 - Explain why fatty acids cannot serve as fuel for...Ch. 25 - Prob. 25.51EPCh. 25 - Prob. 25.52EPCh. 25 - Prob. 25.53EPCh. 25 - Prob. 25.54EPCh. 25 - Prob. 25.55EPCh. 25 - Prob. 25.56EPCh. 25 - Prob. 25.57EPCh. 25 - Prob. 25.58EPCh. 25 - Prob. 25.59EPCh. 25 - Prob. 25.60EPCh. 25 - Prob. 25.61EPCh. 25 - Why does a deficiency of carbohydrates in the diet...Ch. 25 - Prob. 25.63EPCh. 25 - Prob. 25.64EPCh. 25 - Prob. 25.65EPCh. 25 - Prob. 25.66EPCh. 25 - Prob. 25.67EPCh. 25 - Prob. 25.68EPCh. 25 - Prob. 25.69EPCh. 25 - Prob. 25.70EPCh. 25 - Prob. 25.71EPCh. 25 - Prob. 25.72EPCh. 25 - Prob. 25.73EPCh. 25 - Prob. 25.74EPCh. 25 - Prob. 25.75EPCh. 25 - Severe ketosis situations produce acidosis....Ch. 25 - Prob. 25.77EPCh. 25 - Prob. 25.78EPCh. 25 - Prob. 25.79EPCh. 25 - Prob. 25.80EPCh. 25 - Prob. 25.81EPCh. 25 - Prob. 25.82EPCh. 25 - Prob. 25.83EPCh. 25 - Prob. 25.84EPCh. 25 - Prob. 25.85EPCh. 25 - Prob. 25.86EPCh. 25 - Prob. 25.87EPCh. 25 - Prob. 25.88EPCh. 25 - Prob. 25.89EPCh. 25 - Prob. 25.90EPCh. 25 - Prob. 25.91EPCh. 25 - Prob. 25.92EPCh. 25 - Prob. 25.93EPCh. 25 - Prob. 25.94EPCh. 25 - What role does molecular oxygen, O2, play in fatty...Ch. 25 - Prob. 25.96EPCh. 25 - Prob. 25.97EPCh. 25 - Prob. 25.98EPCh. 25 - Prob. 25.99EPCh. 25 - Prob. 25.100EPCh. 25 - Prob. 25.101EPCh. 25 - Prob. 25.102EPCh. 25 - Prob. 25.103EPCh. 25 - Prob. 25.104EPCh. 25 - Prob. 25.105EPCh. 25 - Prob. 25.106EPCh. 25 - Prob. 25.107EPCh. 25 - Prob. 25.108EPCh. 25 - Prob. 25.109EPCh. 25 - Prob. 25.110EPCh. 25 - Prob. 25.111EPCh. 25 - Prob. 25.112EPCh. 25 - Prob. 25.113EPCh. 25 - Prob. 25.114EP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Organic And Biological Chemistry
Chemistry
ISBN:9781305081079
Author:STOKER, H. Stephen (howard Stephen)
Publisher:Cengage Learning,
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Text book image
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
Text book image
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning