Essential University Physics
Essential University Physics
4th Edition
ISBN: 9780134988566
Author: Wolfson, Richard
Publisher: Pearson Education,
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 26, Problem 1FTD

An electron moving with velocity v through a magnetic field B experiences a magnetic force F . Which of the vectors F , v , and B must be at right angles?

Expert Solution & Answer
Check Mark
To determine
Which of the vectors are at right angles to each other.

Answer to Problem 1FTD

Vectors F,vandB are perpendicular to each other.

Explanation of Solution

Write the equation to find the force acting on a particle in magnetic field.

F=qv×B

Here,

F is the force

q is the charge

v is the velocity

B is the magnetic field

From the equation we can see that both velocity vector and magnetic field vector are perpendicular to each other and they are both perpendicular to the force.

Therefore all the three vectors are perpendicular to each other.

Conclusion:

Therefore, vectors F,vandB are perpendicular to each other.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
02:11
Students have asked these similar questions
Two protons move parallel to the x-axis in opposite directions at the same v (small compared to speed of light c. At the instant shown, find the electric and magnetic forces on the upper proton and determine ratio of their magnitudes, if v = 180 x108 cm/s. P1 (0,0,4) and P2 (0,0,0)
A particle is launched from the origin on the ground with an initialvelocity? = (2.40 m/s) ? + (2.00 m/s) ?. The particle falls freely under earth’sgravitational field.
A particle of charge q and mass m is accelerated from rest through a potential difference V, after which it encounters a uniform magnetic field B. If the particle moves in a plane perpendicular to B, what is the radius of its circular orbit?

Chapter 26 Solutions

Essential University Physics

Ch. 26 - Two identical particles carrying equal charge are...Ch. 26 - Prob. 5FTDCh. 26 - Do currents in the same direction attract or...Ch. 26 - If a current is passed through an unstretched...Ch. 26 - Figure 26.38 shows some magnetic field lines...Ch. 26 - Prob. 9FTDCh. 26 - Prob. 10FTDCh. 26 - Find (a) the minimum magnetic field needed to...Ch. 26 - An electron moving at right angles to a 0.10-T...Ch. 26 - Find the magnitude of the magnetic force on a...Ch. 26 - The magnitude of Earths magnetic field is about...Ch. 26 - A velocity selector uses a 60-mT magnetic field...Ch. 26 - Prob. 16ECh. 26 - How long: does it take an electron to complete a...Ch. 26 - Radio astronomers detect electromagnetic radiation...Ch. 26 - Prob. 19ECh. 26 - Two protons, moving in a plane perpendicular to a...Ch. 26 - Find the magnitude of the force on a 65.5-cm-long...Ch. 26 - A wire carrying 15 A makes a 25 angle with a...Ch. 26 - In an experimental nuclear fusion reactor, plans...Ch. 26 - A wire with mass per unit length 75 g/m runs...Ch. 26 - A wire carries 6.71 A. You form it into a...Ch. 26 - A single-turn wire loop is 2.0 cm in diameter and...Ch. 26 - A 2.2-m-long wire carrying 3.5 A is wound into a...Ch. 26 - Whats the current in a long wire if the magnetic...Ch. 26 - In standard household wiring, parallel wires about...Ch. 26 - Earths magnetic dipole moment is 8.01022 Am2. Find...Ch. 26 - A single-turn square wire loop 18.0 cm on a side...Ch. 26 - An electric motor contains a 250-turn circular...Ch. 26 - The line integral of the magnetic field on a...Ch. 26 - The magnetic field shown in Fig. 26.39 has uniform...Ch. 26 - Number 12 gauge wire, commonly used in household...Ch. 26 - Prob. 36ECh. 26 - A superconducting solenoid has 3300 turns per...Ch. 26 - Example 26.2: Chlorine is an unusual element in...Ch. 26 - Example 26.2: You’re trying to measure arsenic...Ch. 26 - Example 26.2: A beam of elections is initially...Ch. 26 - Example26.2: The mass spectrometer described in...Ch. 26 - Example 26.7: A long, straight wire 9.27 mm in...Ch. 26 - Example 26.7: Niobium-tin, a commonly used...Ch. 26 - Prob. 44ECh. 26 - Example 26.7: A coaxial cable like the one...Ch. 26 - Prob. 46PCh. 26 - Jupiter has the strongest magnetic field in our...Ch. 26 - A proton moving with velocity v1 = 3.6 104 m/s...Ch. 26 - A simplified model of Earths magnetic field has it...Ch. 26 - Before the advent of today’s flat-screen...Ch. 26 - Show that the orbital radius of a charged particle...Ch. 26 - Prob. 52PCh. 26 - Prob. 53PCh. 26 - Prob. 54PCh. 26 - Youre designing a prosthetic ankle that includes a...Ch. 26 - A 20-cm-long conducting rod with mass 18 g is...Ch. 26 - Prob. 57PCh. 26 - Nuclear magnetic resonance (NMR) is a technique...Ch. 26 - A wire carrying 1.5 A passes through a 48-mT...Ch. 26 - Your smartphone contains a magnetometer that uses...Ch. 26 - A single piece of wire carrying current I is bent...Ch. 26 - You and a friend get lost while hiking, so your...Ch. 26 - Part of a long wire carrying current I is bent...Ch. 26 - A long, straight wire carries a 25-A current. A...Ch. 26 - A long conducting rod of radius R carries a...Ch. 26 - A long, hollow conducting pipe of radius R carries...Ch. 26 - You have 10 m of 0.50-mm-diameter copper wire and...Ch. 26 - Prob. 69PCh. 26 - The largest lightning strikes have peak currents...Ch. 26 - Prob. 71PCh. 26 - Prob. 72PCh. 26 - Prob. 73PCh. 26 - A circular wire loop of radius 15 cm and...Ch. 26 - Prob. 75PCh. 26 - A long, hollow conducting pipe of radius R and...Ch. 26 - A solid conducting wire of radius R runs parallel...Ch. 26 - A disk of radius a carries uniform surface charge...Ch. 26 - Youre developing a system to orient an orbiting...Ch. 26 - Prob. 80PCh. 26 - Prob. 81PCh. 26 - Find an expression for the magnetic field at the...Ch. 26 - Prob. 83PCh. 26 - A Helmholtz coil is a pair of identical circular...Ch. 26 - Prob. 85PCh. 26 - Derive Equation 26.20 by considering the current...Ch. 26 - Your roommate is sold on magnet therapy, a sham...Ch. 26 - A toroid is a solenoid-like coil bent into a...Ch. 26 - A toroid is a solenoid-like coil bent into a...Ch. 26 - A toroid is a solenoid-like coil bent into a...Ch. 26 - A toroid is a solenoid-like coil bent into a...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY