
Physical Science
11th Edition
ISBN: 9780077862626
Author: Bill Tillery, Stephanie J. Slater, Timothy F. Slater
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 12PEB
(a) What is the kinetic energy of a 1,500.0 kg car with a velocity of 72.0 km/h? (b) How much work must be done on this car to bring it to a complete stop?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Blocks A and B each have a mass m = 14 kg. The coefficient of static friction between
A and B is μg = 0.36. The angle shown is 0 = 39°. Neglect any friction between B and
C.
A
0 B
P
C
Determine the largest horizontal force P that can be applied so that A will not slip on B
Ŕ =
number (rtol=0.05, atol=1e-08)
N
Two children push on opposite sides of a door during play. Both push horizontally and
perpendicular to the door. One child pushes with a force of 53 N at a distance of 0.16 m
from the hinges, and the second child pushes at a distance of 0.23 m.
Part 1
What force must the second child exert to keep the door from moving? (Direction
does not matter)
F =
number (rtol=0.05, atol=1e-08)
N
Blocks A and B each have a mass m = 14 kg. The coefficient of static friction between
A and B is μg = 0.42. The angle shown is 0 = 48°. Neglect any friction between B and
C.
A
0 B
C
Determine the largest horizontal force P that can be applied so that A will not slip on B
P= number (rtol=0.05, atol=1e-08)
N
?
Chapter 3 Solutions
Physical Science
Ch. 3 - According to the definition of mechanical work,...Ch. 3 -
2. The metric unit of a joule (J) is a unit of...Ch. 3 -
3. A N m/s is a unit of...Ch. 3 - Prob. 4ACCh. 3 - Prob. 5ACCh. 3 -
6. A power rating of 1 joule per s is known as a...Ch. 3 -
7. According to PE = mgh, gravitational potential...Ch. 3 -
8. Two cars have the same mass, but one is moving...Ch. 3 - Prob. 9ACCh. 3 -
10. Potential energy and kinetic energy are...
Ch. 3 -
11. Many forms of energy in use today can be...Ch. 3 -
12. In all of our energy uses, we find that...Ch. 3 - Prob. 13ACCh. 3 - Prob. 14ACCh. 3 - Prob. 15ACCh. 3 -
16. The amount of energy generated by...Ch. 3 - Prob. 17ACCh. 3 - Prob. 18ACCh. 3 -
19. A renewable energy source is...Ch. 3 - Prob. 20ACCh. 3 - Prob. 21ACCh. 3 -
22. Which quantity has the greatest influence on...Ch. 3 - Prob. 23ACCh. 3 -
24. Most all energy comes to and leaves Earth in...Ch. 3 -
25. A spring-loaded paper clamp exerts a force of...Ch. 3 -
26. The force exerted when doing work by lifting...Ch. 3 -
27. The work accomplished by lifting an object...Ch. 3 -
28. An iron cannonball and a bowling ball are...Ch. 3 -
29. Two students are poised to dive off...Ch. 3 -
30. A car is moving straight down a highway. What...Ch. 3 - 31. Two identical cars are moving straight down a...Ch. 3 - Prob. 32ACCh. 3 - Prob. 33ACCh. 3 -
34. Today, the basic problem with using solar...Ch. 3 - Prob. 35ACCh. 3 -
36. Petroleum is believed to have formed over...Ch. 3 -
1. How is work related to energy?
Ch. 3 -
2. What is the relationship between the work done...Ch. 3 - Does a person standing motionless in the aisle of...Ch. 3 - Prob. 4QFTCh. 3 -
5. Is a kWh a unit of work, energy, power, or...Ch. 3 -
6. If energy cannot be destroyed, why do some...Ch. 3 -
7. A spring damp exerts a force on a stack of...Ch. 3 -
8. Why are petroleum, natural gas, and coal...Ch. 3 -
9. From time to time, people claim to have...Ch. 3 -
10. Define a joule. What is the difference...Ch. 3 -
11. Compare the energy needed to raise a mass 10...Ch. 3 -
12. What happens to the kinetic energy of a...Ch. 3 -
l. Evaluate the requirement that something must...Ch. 3 -
2. What are the significant similarities and...Ch. 3 -
3. Whenever you do work on something, you give it...Ch. 3 -
4. Simple machines are useful because they are...Ch. 3 -
5. Use the equation for kinetic energy to prove...Ch. 3 -
6. Describe at least several examples of negative...Ch. 3 -
7. The forms of energy are the result of...Ch. 3 -
8. Most technological devices convert one of the...Ch. 3 -
9. Are there any contradictions to the law of...Ch. 3 -
1. How much work is done when a force of 800.0 N...Ch. 3 -
2. A force of 400.0 N is exerted on a 1,250 N car...Ch. 3 -
3. A 5.0 kg textbook is raised a distance of 30.0...Ch. 3 -
4. An electric hoist does 196,000 J of work in...Ch. 3 -
5. What is the horsepower of a 1,500.0 kg car...Ch. 3 -
6. (a) How many horsepower is a 250 W lightbulb?...Ch. 3 -
7. What is the kinetic energy of a 30–gram bullet...Ch. 3 -
8. How much work will be done by a 30–gram bullet...Ch. 3 -
9. A force of 50.0 lb is used to push a box 10.0...Ch. 3 -
10. (a) How much work is done in raising a 50.0...Ch. 3 -
11. What is the kinetic energy in J of a 60.0 g...Ch. 3 -
12. (a) What is the kinetic energy of a 1,500.0...Ch. 3 -
13. The driver of an 800.0 kg car decides to...Ch. 3 -
14. Compare the kinetic energy of an 800.0 kg car...Ch. 3 -
15. A 175.0 lb hiker is able to ascend a 1,980.0...Ch. 3 -
16. (a) How many seconds will it take a 10.0 hp...Ch. 3 -
17. A ball is dropped from 20.0 ft above the...Ch. 3 -
18. What is the velocity of a 60.0 kg jogger with...Ch. 3 -
19. A small sports car and a pickup truck start...Ch. 3 -
20. A 70.0 kg student runs up the stairs of a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two cars are driving at 19 m/s along the road shown in the figure. Car B is at the bottom of a hill and car C is at the top. Both hills have a 263 m radius of curvature. Suppose both cars suddenly brake hard and start to skid. Part 1 B What is the tangential (parallel to the road) acceleration of car B? Assume μk = 0.850 and car B has velocity in the positive direction. a = Part 2 number (rtol=0.05, atol=1e-08) %|3 What is the tangential (parallel to the road) acceleration of car C? Assume μk=0.850 and car C has velocity in the positive direction. a = number (rtol=0.05, atol=1e-08) IIIarrow_forwardBlocks A and B each have a mass m = 10 kg. The coefficient of static friction between A and B is μg = 0.25. The angle shown is 0 = 31°. Neglect any friction between B and C. A 0 B P C Determine the largest horizontal force Ễ that can be applied so that A will not slip on B Ŕ = number (rtol=0.05, atol=1e-08) Narrow_forwardTwo cars are driving at 19 m/s along the road shown in the figure. Car B is at the bottom of a hill and car C is at the top. Both hills have a 263 m radius of curvature. Suppose both cars suddenly brake hard and start to skid. Part 1 B What is the tangential (parallel to the road) acceleration of car B? Assume μk = 0.850 and car B has velocity in the positive direction. a = Part 2 number (rtol=0.05, atol=1e-08) %|3 What is the tangential (parallel to the road) acceleration of car C? Assume μk=0.850 and car C has velocity in the positive direction. a = number (rtol=0.05, atol=1e-08) IIIarrow_forward
- Blocks A and B each have a mass m = 11 kg. The coefficient of static friction between A and B is μg = 0.38. The angle shown is 0 = 43°. Neglect any friction between B and C. A P 0 B Ꮎ C Determine the largest horizontal force P that can be applied so that A will not slip on B P = = number (rtol=0.05, atol=1e-08) N ?arrow_forwardAdress the Assignment 3, Calculate the speeds for raisin 2 & raisin 3. Show step by step solution please. Question is from a book named "The Essential Cosmic Perspective" 8th edition by Bennett, Donahue, Schneider, Voit.arrow_forwardAdress the Assignment 1 question, How far is a light-year? Show step by step solution please. Question is from a book named "The Essential Cosmic Perspective" 8th edition by Bennett, Donahue, Schneider, Voit.arrow_forward
- Adress the Assignment 2 question, Exactly how long? Show step by step solution please. Question is from a book named "The Essential Cosmic Perspective" 8th edition by Bennett, Donahue, Schneider, Voit.arrow_forwardAdress the Assignment 1 question, How far is a light-year? Show step by step solution please. Question is from a book named "The Essential Cosmic Perspective" 8th edition by Bennett, Donahue, Schneider, Voit.arrow_forwardQuestion 17 A ping pong ball, of mass 2.7 g and diameter 4.0 cm, is dropped from a 15-m high building. a. Estimate the ball's terminal velocity. b. At what speed would the ball hit the ground in the absence of air drag? Papa Yesterdayarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY