HEAT+MASS TRANSFER:FUND.+APPL.
HEAT+MASS TRANSFER:FUND.+APPL.
6th Edition
ISBN: 9780073398198
Author: CENGEL
Publisher: RENT MCG
Question
Book Icon
Chapter 3, Problem 176P

(a)

To determine

To find:the R and U for air space between studs do not have any reflective surface.

  U=1.203Wm2C0R=0.831m2C0W

Given information:

  dimension of wood studs = 38mm×140mmcenter distance = 400mmdimensions of cavity = 140mmthickness of gypsum wallboard = 13mmthickness of rigid foam insulation = 25mmdimension of wood lapping siding = 13mm×200mmthe insulation cavity constitutes 80%heat transmit area and while studs,headers,plates and still constitute 20%.

Formula used:

The expression fortotal thermal resistance for the entire wall is expressed as follows:

   R overall = 1 U overall where U overall = (U f area ) insulations + (U f area ) stud Roverall=thermal resistanceUoverall=heat transfer coefficientfarea=area fraction

  εeffective=11 ε 1 +1 ε 2 1ε1=effective emissivity of surface 1ε2=effective emissivityof surface 2εcollective=effective emissivityvof surface combination

Calculation:

The total average thermal resistance for wall is calculated as follows:

  Roverall=1UoverallwhereUoverall=(Ufarea)insulations+(Ufarea)stud

And the value of the area fraction factor is 0.82 for air space and 0.18 for stud section. εeffective=110.9+10.91=0.82

    ConstructionR-value m2C0W
    Between studsAt studs
    1. Still air above ceiling0.120.044
    2. Linoleum0.0090.14
    3. Felt0.0110.23
    4.Plywood0.11----
    5. Wood subfloor0.166----
    6a. Air space, 90 mm, nonreflective0.16----
    6b. Stud of wood, 38 mm by 90 mm-----0.63
    7. Wallboard, 13 mm0.0790.079
    8. Still air near ceiling0.120.12
    Total thermal resistance of each part, R m2C0W0.7751.243
    The U-factor of each part,1.2900.805
    Area fraction of each part,0.820.18
    Total U-factor1.203 Wm2C0
    Total thermal resistance,0.831 m2C0W

(b)

To determine

To find: The winter R-value and the U-factor of a flat ceiling with an air space has reflective surface with ε=0.05 on one the side.

(c)

To determine

To find: The winter R-value and the U-factor of a flat ceiling with an air space has reflective surface with ε=0.05 on one the side.

Blurred answer

Chapter 3 Solutions

HEAT+MASS TRANSFER:FUND.+APPL.

Ch. 3 - The bottom of a pan is made of a 4-mm-thick...Ch. 3 - Consider a surface of area A at which the...Ch. 3 - How does the thermal resistance network associated...Ch. 3 - Consider steady one-dimensional heat transfer...Ch. 3 - Consider a window glass consisting of two...Ch. 3 - Prob. 16PCh. 3 - Consider a person standing in a room at 20C with...Ch. 3 - Consider an electrically heated brick house...Ch. 3 - A12-cm18-cm circuit board houses on its surface...Ch. 3 - Water is boiling in a 25-cm-diameter aluminum pan...Ch. 3 - A cylindrical resistor element on a circuit board...Ch. 3 - Prob. 22PCh. 3 - A1.0m1.5m double-pane window consists of two...Ch. 3 - Prob. 24PCh. 3 - Prob. 25PCh. 3 - Prob. 26PCh. 3 - Prob. 27PCh. 3 - Prob. 28EPCh. 3 - To defog the rear window of an automobile, a very...Ch. 3 - A transparent film is to be bonded onto the top...Ch. 3 - To defrost ice accumulated on the outer surface of...Ch. 3 - Prob. 32PCh. 3 - Prob. 33PCh. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Heat is to be conducted along a circuit board that...Ch. 3 - Prob. 37EPCh. 3 - Consider a house that has a 10m20-m base and a...Ch. 3 - Prob. 39EPCh. 3 - Prob. 40PCh. 3 - Prob. 41PCh. 3 - Prob. 42PCh. 3 - Prob. 43PCh. 3 - What is thermal contact resistance? How is it...Ch. 3 - Will the thermal contact resistance be greater for...Ch. 3 - Explain how the thermal contact resistance can be...Ch. 3 - A waII consists of two layers of insulation...Ch. 3 - Prob. 48CPCh. 3 - Consider two surfaces pressed against each other....Ch. 3 - Prob. 50PCh. 3 - Two 5-cm-diameter, 15-cm-long aluminum bars...Ch. 3 - Prob. 52PCh. 3 - Two identical aluminum plates with thickness of 30...Ch. 3 - A tvolayer wall is made of two metal plates, with...Ch. 3 - Prob. 55PCh. 3 - An aluminum plate and a stainless steel plate are...Ch. 3 - Prob. 57PCh. 3 - Prob. 58PCh. 3 - Prob. 59PCh. 3 - Prob. 60PCh. 3 - Prob. 61PCh. 3 - What are the two approaches used in the...Ch. 3 - The thermal resistance networks can also be used...Ch. 3 - When plotting the thermal resistance network...Ch. 3 - A 10-cm-thick vall is to be constructed with...Ch. 3 - Prob. 66EPCh. 3 - Prob. 67PCh. 3 - Prob. 68PCh. 3 - Prob. 69PCh. 3 - Prob. 70PCh. 3 - Prob. 71PCh. 3 - Prob. 72PCh. 3 - A 12-m-long and 5-m-high wall is constructed of...Ch. 3 - Prob. 74EPCh. 3 - Prob. 75PCh. 3 - Prob. 76PCh. 3 - Prob. 77PCh. 3 - What is an infinitely long cylinder? When is it...Ch. 3 - Can the thermal resistance concept be used for a...Ch. 3 - Consider a short cylinder whose top and bottom...Ch. 3 - Prob. 81PCh. 3 - Prob. 82PCh. 3 - Prob. 83PCh. 3 - Superheated steam at an average temperature 20C is...Ch. 3 - Prob. 85PCh. 3 - Prob. 86PCh. 3 - Prob. 87EPCh. 3 - Prob. 88EPCh. 3 - Prob. 89EPCh. 3 - Prob. 90PCh. 3 - Prob. 91PCh. 3 - Prob. 92PCh. 3 - Prob. 93EPCh. 3 - Prob. 94PCh. 3 - Prob. 95PCh. 3 - Prob. 96PCh. 3 - Liquid hydrogen is flowing through an insulated...Ch. 3 - Exposure to high concentrations of gaseous ammonia...Ch. 3 - A mixture of chemicals is flowing in a pipe...Ch. 3 - Ice slurry is being transported in a pipe...Ch. 3 - Prob. 101PCh. 3 - Prob. 102PCh. 3 - Prob. 103PCh. 3 - What is the critical radius of insulation? How is...Ch. 3 - Prob. 105CPCh. 3 - Prob. 106CPCh. 3 - Prob. 107CPCh. 3 - A pipe is insulated such that the outer radius of...Ch. 3 - A 0.083-in-diameter electrical wire at 90F is...Ch. 3 - Repeat Prob. 3-109E, assuming a thermal contact...Ch. 3 - Prob. 111PCh. 3 - Prob. 112PCh. 3 - Hot air is to be cooled as it is forced to flow...Ch. 3 - Prob. 114CPCh. 3 - Prob. 115CPCh. 3 - The fins attached to a surface are determined to...Ch. 3 - Explain how the fins enhance heat transfer from a...Ch. 3 - How does the overall effectiveness of a finned...Ch. 3 - Hot water is to be cooled as it flows through the...Ch. 3 - Consider two finned surfaces that are identical...Ch. 3 - The heat transfer surface area of a fin is equal...Ch. 3 - Does the (a) efficiency and (b) effectiveness of a...Ch. 3 - Two pin fins are identical, except that the...Ch. 3 - Two plate fins of constant rectangular cross...Ch. 3 - Two finned surfaces are identical, except that the...Ch. 3 - Obtain a relation for the fin efficiency for a fin...Ch. 3 - Prob. 127PCh. 3 - Consider a very long rectangular fin attached to a...Ch. 3 - Prob. 129PCh. 3 - Prob. 130PCh. 3 - Prob. 131PCh. 3 - Prob. 132PCh. 3 - Prob. 133EPCh. 3 - Prob. 134EPCh. 3 - Prob. 135PCh. 3 - Prob. 136PCh. 3 - Prob. 137PCh. 3 - Prob. 138PCh. 3 - Prob. 139PCh. 3 - Prob. 140PCh. 3 - Prob. 141PCh. 3 - Prob. 142PCh. 3 - Prob. 143PCh. 3 - Prob. 144PCh. 3 - Prob. 145PCh. 3 - Prob. 146PCh. 3 - The human body is adaptable to extreme climatic...Ch. 3 - Consider the conditions of Example 3-14 in the...Ch. 3 - Consider the conditions of Example 3-14 in the...Ch. 3 - Prob. 150PCh. 3 - What is a conduction shape factor? How is it...Ch. 3 - What is the value of conduction shape factors in...Ch. 3 - Prob. 153PCh. 3 - A thin-walled cylindrical container is placed...Ch. 3 - Prob. 155PCh. 3 - Prob. 156PCh. 3 - Prob. 157PCh. 3 - Prob. 158EPCh. 3 - Prob. 159PCh. 3 - Prob. 160PCh. 3 - Prob. 161PCh. 3 - Prob. 162PCh. 3 - Prob. 163PCh. 3 - Prob. 164PCh. 3 - Consider a house with a flat roof whose outer...Ch. 3 - Prob. 166PCh. 3 - Radioactive material, stored in a spherical vessel...Ch. 3 - What is the R-value of a wall? How does it differ...Ch. 3 - What is effective emissivity for a plane-parallel...Ch. 3 - Prob. 170CPCh. 3 - What is a radiant barrier? What kinds of materials...Ch. 3 - Consider a house whose attic space is ventilated...Ch. 3 - Prob. 173PCh. 3 - Prob. 174PCh. 3 - Prob. 175PCh. 3 - Prob. 176PCh. 3 - Prob. 177PCh. 3 - Prob. 178PCh. 3 - Determine the winter R-value and the U-factor of a...Ch. 3 - The overall heat transfer coefficient (the...Ch. 3 - Prob. 181EPCh. 3 - Determine the summer and winter R-values. in m2 ....Ch. 3 - The overall heat transfer coefficient of a wall is...Ch. 3 - Two homes are identical, except that the walls of...Ch. 3 - Prob. 185PCh. 3 - Consider two identical people each generating 60 V...Ch. 3 - Cold conditioned air at 12C is flowing inside a...Ch. 3 - Hot water is flowing at an average velocity of 1.5...Ch. 3 - Prob. 189PCh. 3 - Prob. 190PCh. 3 - Prob. 191PCh. 3 - Prob. 192PCh. 3 - Prob. 193PCh. 3 - Prob. 194PCh. 3 - Prob. 195PCh. 3 - Prob. 196PCh. 3 - Prob. 197PCh. 3 - A total of 10 rectangular aluminum fins...Ch. 3 - Prob. 199PCh. 3 - A plane wall surface at 200C is to be cooled with...Ch. 3 - Prob. 201PCh. 3 - Prob. 202PCh. 3 - Prob. 203PCh. 3 - Prob. 204PCh. 3 - A 0.6-rn-diameter, 1.9-rn-long cylindrical tank...Ch. 3 - Prob. 206PCh. 3 - Prob. 207PCh. 3 - A thin-walled spherical tank is buried in the...Ch. 3 - Heat is lost at a rate of 275 W per m2 area of a 1...Ch. 3 - Prob. 210PCh. 3 - Heat is generated steadily in a 3-cm-diameter...Ch. 3 - Prob. 212PCh. 3 - Prob. 213PCh. 3 - Prob. 214PCh. 3 - Prob. 215PCh. 3 - Prob. 216PCh. 3 - Consider two walls. A and B, with the same surface...Ch. 3 - Prob. 218PCh. 3 - A room at 20C air temperature is losing heat to...Ch. 3 - Prob. 220PCh. 3 - A 1-cm-diameter, 30cm-long fin made of aluminum...Ch. 3 - A hot surface at 80C in air at 20C is to be cooled...Ch. 3 - A cylindrical pin fin of diameter 0.6 cm and...Ch. 3 - A 3-cm-long. 2-nuti x 2-mm rectangular...Ch. 3 - Two finned surfaces with long fins are identical,...Ch. 3 - A 20-cm-diameter hot sphere at 120C is buried in...Ch. 3 - A 25-cm-diameter, 2.4-rn-long vertical cylinder...Ch. 3 - Prob. 228PCh. 3 - The walls of a food storage facility are made of a...Ch. 3 - The equivalent thermal resistance for the thermal...Ch. 3 - Prob. 231PCh. 3 - Prob. 232PCh. 3 - Prob. 233PCh. 3 - The fin efficiency is defined as the ratio of the...Ch. 3 - Prob. 235PCh. 3 - In the United States, building insulation is...Ch. 3 - Prob. 237PCh. 3 - A plane brick wall (k=0.7W/m.K) and is 10 cm...Ch. 3 - The temperature in deep space is close to absolute...Ch. 3 - In the design of electronic components, it is...Ch. 3 - Using cylindrical samples of the same material,...Ch. 3 - Find out about the wall construction of the cabins...Ch. 3 - Prob. 243PCh. 3 - A house with 200-m2 floor space is to be heated...
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY