bartleby
search
close search
Hit Return to see all results
close solutoin list

Chapter 3, Problem 3.42QP

FindFindarrow_forward

CHEMISTRY: ATOMS FIRST VOL 1 W/CON...

14th Edition
Burdge
ISBN: 9781259327933

Solutions

Chapter
Section
FindFindarrow_forward

CHEMISTRY: ATOMS FIRST VOL 1 W/CON...

14th Edition
Burdge
ISBN: 9781259327933
Interpretation Introduction

Interpretation:

Bohr’s theory of the hydrogen atom, its explanation for the appearance of an emission spectrum and the difference of Bohr’s theory from concepts of classical physics should be described.

Concept Introduction:

The electrons are excited thermally when the light is used by an object.  As a result, an emission spectrum comes.  Line spectra consist of light only at specific, discrete wavelengths.

The emission of radiation given by an energized hydrogen atom to the electron falling from a higher-energy orbit to a lower orbit give a quantum of energy in the form of light.  Based on electrostatic interaction and law of motion, Bohr derived the following equation.

En = 2.18 × 1018 J (1n2)

where n gets an integer values such as = 1, 2, 3 and so on.  This is the energy of electron in nth orbital.

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Answers to Your Study Problems

Solve them all with bartleby. Boost your grades with guidance from subject experts covering thousands of textbooks. All for just $9.99/month

Get As ASAP