BuyFindarrow_forward

Organic And Biological Chemistry

7th Edition
STOKER + 1 other
ISBN: 9781305081079

Solutions

Chapter
Section
BuyFindarrow_forward

Organic And Biological Chemistry

7th Edition
STOKER + 1 other
ISBN: 9781305081079
Textbook Problem

Assign an IUPAC name to each of the following alcohols.

Chapter 3, Problem 3.9EP, Assign an IUPAC name to each of the following alcohols.

(a)

Interpretation Introduction

Interpretation:

The IUPAC name for the given alcohol has to be assigned.

Concept Introduction:

IUPAC rules for naming alcohols that contain single hydroxyl group:

  • Longest carbon chain has to be identified that contains hydroxyl group also. The chain name is obtained by replacing the letter “-e” in alkane with “-ol”.
  • The numbering has to be given so that the hydroxyl group gets the least numbering.
  • Name and location of any other substituent present in the chain has to be identified.
  • If in a ring the hydroxyl group is present, then that carbon is numbered 1 and the numbering then proceeds counterclockwise or clockwise in a way that substituents present if any gets the least numbering.
  • Hydroxyl group as a substituent in a molecule is named as hydroxy group rather than hydroxyl group.

IUPAC rules for naming alcohols that contain more than one hydroxyl group:

  • The same rules said above is followed but the prefix di-, tri-, tetra etc is added corresponding to the number of hydroxyl groups that is present.
Explanation

Given structure is,

The longest continuous carbon chain with the hydroxyl group is found to be six carbon chain. Therefore, the parent alkane is hexane. As a hydroxyl group is present the name of the alcohol can be given as hexanol...

(b)

Interpretation Introduction

Interpretation:

The IUPAC name for the given alcohol has to be assigned.

Concept Introduction:

IUPAC rules for naming alcohols that contain single hydroxyl group:

  • Longest carbon chain has to be identified that contains hydroxyl group also. The chain name is obtained by replacing the letter “-e” in alkane with “-ol”.
  • The numbering has to be given so that the hydroxyl group gets the least numbering.
  • Name and location of any other substituent present in the chain has to be identified.
  • If in a ring the hydroxyl group is present, then that carbon is numbered 1 and the numbering then proceeds counterclockwise or clockwise in a way that substituents present if any gets the least numbering.
  • Hydroxyl group as a substituent in a molecule is named as hydroxy group rather than hydroxyl group.

IUPAC rules for naming alcohols that contain more than one hydroxyl group:

  • The same rules said above is followed but the prefix di-, tri-, tetra etc is added corresponding to the number of hydroxyl groups that is present.

(c)

Interpretation Introduction

Interpretation:

The IUPAC name for the given alcohol has to be assigned.

Concept Introduction:

IUPAC rules for naming alcohols that contain single hydroxyl group:

  • Longest carbon chain has to be identified that contains hydroxyl group also. The chain name is obtained by replacing the letter “-e” in alkane with “-ol”.
  • The numbering has to be given so that the hydroxyl group gets the least numbering.
  • Name and location of any other substituent present in the chain has to be identified.
  • If in a ring the hydroxyl group is present, then that carbon is numbered 1 and the numbering then proceeds counterclockwise or clockwise in a way that substituents present if any gets the least numbering.
  • Hydroxyl group as a substituent in a molecule is named as hydroxy group rather than hydroxyl group.

IUPAC rules for naming alcohols that contain more than one hydroxyl group:

  • The same rules said above is followed but the prefix di-, tri-, tetra etc is added corresponding to the number of hydroxyl groups that is present.

(d)

Interpretation Introduction

Interpretation:

The IUPAC name for the given alcohol has to be assigned.

Concept Introduction:

IUPAC rules for naming alcohols that contain single hydroxyl group:

  • Longest carbon chain has to be identified that contains hydroxyl group also. The chain name is obtained by replacing the letter “-e” in alkane with “-ol”.
  • The numbering has to be given so that the hydroxyl group gets the least numbering.
  • Name and location of any other substituent present in the chain has to be identified.
  • If in a ring the hydroxyl group is present, then that carbon is numbered 1 and the numbering then proceeds counterclockwise or clockwise in a way that substituents present if any gets the least numbering.
  • Hydroxyl group as a substituent in a molecule is named as hydroxy group rather than hydroxyl group.

IUPAC rules for naming alcohols that contain more than one hydroxyl group:

  • The same rules said above is followed but the prefix di-, tri-, tetra etc is added corresponding to the number of hydroxyl groups that is present.

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-3.4 P-2QQSect-3.4 P-3QQSect-3.5 P-1QQSect-3.5 P-2QQSect-3.5 P-3QQSect-3.5 P-4QQSect-3.6 P-1QQSect-3.6 P-2QQSect-3.6 P-3QQSect-3.7 P-1QQSect-3.7 P-2QQSect-3.8 P-1QQSect-3.8 P-2QQSect-3.9 P-1QQSect-3.9 P-2QQSect-3.9 P-3QQSect-3.9 P-4QQSect-3.9 P-5QQSect-3.9 P-6QQSect-3.10 P-1QQSect-3.10 P-2QQSect-3.11 P-1QQSect-3.11 P-2QQSect-3.11 P-3QQSect-3.12 P-1QQSect-3.12 P-2QQSect-3.13 P-1QQSect-3.13 P-2QQSect-3.13 P-3QQSect-3.14 P-1QQSect-3.14 P-2QQSect-3.14 P-3QQSect-3.15 P-1QQSect-3.15 P-2QQSect-3.15 P-3QQSect-3.15 P-4QQSect-3.16 P-1QQSect-3.16 P-2QQSect-3.17 P-1QQSect-3.17 P-2QQSect-3.17 P-3QQSect-3.18 P-1QQSect-3.18 P-2QQSect-3.18 P-3QQSect-3.19 P-1QQSect-3.19 P-2QQSect-3.20 P-1QQSect-3.20 P-2QQSect-3.20 P-3QQSect-3.20 P-4QQSect-3.20 P-5QQSect-3.21 P-1QQSect-3.21 P-2QQSect-3.21 P-3QQSect-3.21 P-4QQSect-3.21 P-5QQCh-3 P-3.1EPCh-3 P-3.2EPCh-3 P-3.3EPCh-3 P-3.4EPCh-3 P-3.5EPCh-3 P-3.6EPCh-3 P-3.7EPCh-3 P-3.8EPCh-3 P-3.9EPCh-3 P-3.10EPCh-3 P-3.11EPCh-3 P-3.12EPCh-3 P-3.13EPCh-3 P-3.14EPCh-3 P-3.15EPCh-3 P-3.16EPCh-3 P-3.17EPCh-3 P-3.18EPCh-3 P-3.19EPCh-3 P-3.20EPCh-3 P-3.21EPCh-3 P-3.22EPCh-3 P-3.23EPCh-3 P-3.24EPCh-3 P-3.25EPCh-3 P-3.26EPCh-3 P-3.27EPCh-3 P-3.28EPCh-3 P-3.29EPCh-3 P-3.30EPCh-3 P-3.31EPCh-3 P-3.32EPCh-3 P-3.33EPCh-3 P-3.34EPCh-3 P-3.35EPCh-3 P-3.36EPCh-3 P-3.37EPCh-3 P-3.38EPCh-3 P-3.39EPCh-3 P-3.40EPCh-3 P-3.41EPCh-3 P-3.42EPCh-3 P-3.43EPCh-3 P-3.44EPCh-3 P-3.45EPCh-3 P-3.46EPCh-3 P-3.47EPCh-3 P-3.48EPCh-3 P-3.49EPCh-3 P-3.50EPCh-3 P-3.51EPCh-3 P-3.52EPCh-3 P-3.53EPCh-3 P-3.54EPCh-3 P-3.55EPCh-3 P-3.56EPCh-3 P-3.57EPCh-3 P-3.58EPCh-3 P-3.59EPCh-3 P-3.60EPCh-3 P-3.61EPCh-3 P-3.62EPCh-3 P-3.63EPCh-3 P-3.64EPCh-3 P-3.65EPCh-3 P-3.66EPCh-3 P-3.67EPCh-3 P-3.68EPCh-3 P-3.69EPCh-3 P-3.70EPCh-3 P-3.71EPCh-3 P-3.72EPCh-3 P-3.73EPCh-3 P-3.74EPCh-3 P-3.75EPCh-3 P-3.76EPCh-3 P-3.77EPCh-3 P-3.78EPCh-3 P-3.79EPCh-3 P-3.80EPCh-3 P-3.81EPCh-3 P-3.82EPCh-3 P-3.83EPCh-3 P-3.84EPCh-3 P-3.85EPCh-3 P-3.86EPCh-3 P-3.87EPCh-3 P-3.88EPCh-3 P-3.89EPCh-3 P-3.90EPCh-3 P-3.91EPCh-3 P-3.92EPCh-3 P-3.93EPCh-3 P-3.94EPCh-3 P-3.95EPCh-3 P-3.96EPCh-3 P-3.97EPCh-3 P-3.98EPCh-3 P-3.99EPCh-3 P-3.100EPCh-3 P-3.101EPCh-3 P-3.102EPCh-3 P-3.103EPCh-3 P-3.104EPCh-3 P-3.105EPCh-3 P-3.106EPCh-3 P-3.107EPCh-3 P-3.108EPCh-3 P-3.109EPCh-3 P-3.110EPCh-3 P-3.111EPCh-3 P-3.112EPCh-3 P-3.113EPCh-3 P-3.114EPCh-3 P-3.115EPCh-3 P-3.116EPCh-3 P-3.117EPCh-3 P-3.118EPCh-3 P-3.119EPCh-3 P-3.120EPCh-3 P-3.121EPCh-3 P-3.122EPCh-3 P-3.123EPCh-3 P-3.124EPCh-3 P-3.125EPCh-3 P-3.126EPCh-3 P-3.127EPCh-3 P-3.128EPCh-3 P-3.129EPCh-3 P-3.130EPCh-3 P-3.131EPCh-3 P-3.132EPCh-3 P-3.133EPCh-3 P-3.134EPCh-3 P-3.135EPCh-3 P-3.136EPCh-3 P-3.137EPCh-3 P-3.138EPCh-3 P-3.139EPCh-3 P-3.140EPCh-3 P-3.141EPCh-3 P-3.142EPCh-3 P-3.143EPCh-3 P-3.144EPCh-3 P-3.145EPCh-3 P-3.146EP

Additional Science Solutions

Find more solutions based on key concepts

Show solutions add

Which of the molecules in Question 27 are polar?

Chemistry: Principles and Reactions

How many solid forms of elemental carbon are known?

Chemistry for Engineering Students

Why does cyclohexane assume a chair form rather than a planar hexagon?

Chemistry for Today: General, Organic, and Biochemistry

Food processing can confer a nutritional advantage by adding yogurt to the candy coating of raisins. reducing t...

Nutrition: Concepts and Controversies - Standalone book (MindTap Course List)

The mass of a sports car is 1 200 kg. The shape of the body is such that the aerodynamic drag coefficient is 0....

Physics for Scientists and Engineers, Technology Update (No access codes included)

No animal cell has a ___________. a. plasma membrane b. flagellum c. lysosome d. cell wall

Biology: The Unity and Diversity of Life (MindTap Course List)

Estuaries are classified by their origins. What types of estuaries exist?

Oceanography: An Invitation To Marine Science, Loose-leaf Versin