BuyFindarrow_forward

Elements Of Modern Algebra

8th Edition
Gilbert + 2 others
ISBN: 9781285463230
Textbook Problem
15 views

a. Let G = { [ a ] | [ a ] [ 0 ] } n . Show that G is a group with respect to multiplication in n if and only if n is a prime. State the order of G . This group is called the group of units in n and is designated by U n . (Sec 3.3 # 5 , Sec 3.4 # 11 , Sec 3.5 # 19 )

b. Construct a multiplication table for the group U 7 of all nonzero elements in 7 , and identify the inverse of each element. (Sec 4.4 , # 1 , 19 , 26 )

Sec 3.3 # 5

5. Exercise 33 of section 3.1 shows that U 13 13 is a group under multiplication.

List the elements of the subgroup [ 4 ] of U 13 , and state its order.

List the elements of the subgroup [ 8 ] of U 13 , and state its order.

Sec 3.4 # 11

11. If n is a prime, the nonzero elements of n form a group U n with respect to multiplication. For each of the following values of n , show that this group U n is cyclic.

n = 7

b. n = 5

c. n = 11

d. n = 13

e. n = 17

f. n = 19

Sec 3.5 # 19

19. If n is a prime, U n , the set of nonzero elements of n , forms a group with respect to multiplication. Prove or disprove that the mapping : U n U n defined by the rule in Exercise 18 is an automorphism of U n .

Construct a multiplication table for the group U 7 of all nonzero elements in 7 , and identify the inverse of each element. (Sec 4.4 , # 1 , 19 , 26 )

Sec 4.4 , # 1

1. Consider U 13 , the groups of units in 13 under multiplication. For each of the following subgroups H in U 13 , partition U 13 into left cosets of H , and state the index [ U 13 : H ] of H in U 13

H = [ 4 ]

b. H = [ 8 ]

Sec 4.4 , # 19

19. Find the order of each of the following elements in the multiplicative group of units U p .

[ 2 ] for p = 13

b. [ 5 ] for p = 13

c. [ 3 ] for p = 17

d. [ 8 ] for p = 17

Sec 4.4 , # 26

26. Let p be prime and G the multiplicative group of units U p = { [ a ] p | [ a ] [ 0 ] } . Use Langrange’s Theorem in G to prove Fermat’s Little Theorem in the form [ a ] p = [ a ] for any a .

(a)

To determine

To show: G is a group with respect to multiplication in n if and only if n is prime. State the order of group G.

Explanation

Given information:

Let G={[a]|[a][0]}n. This group is called the group of units in n, and it is designated by Un.

Formula used:

Definition of order of group:

The number of elements in group G is called the order of G, and it is denoted by either o(G) or |G|.

Proof:

Let G={[a]|[a][0]}n be a set of all nonzero elements in n.

We need to prove:

a) G is a group with respect to multiplication in n b) n is prime.

a) b)

Let G be a group with respect to multiplication in n.

Let us assume that n is not prime.

If n is not prime, then there exists a non-trivial factorization, n=ab, where 1<a,b<n, such that the equivalence classes [a],[b]G

(b)

To determine

To construct: A multiplication table for the group U7 for all non-zero elements in 7 and identify the inverse of each element.

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-3.1 P-11TFESect-3.1 P-1ESect-3.1 P-2ESect-3.1 P-3ESect-3.1 P-4ESect-3.1 P-5ESect-3.1 P-6ESect-3.1 P-7ESect-3.1 P-8ESect-3.1 P-9ESect-3.1 P-10ESect-3.1 P-11ESect-3.1 P-12ESect-3.1 P-13ESect-3.1 P-14ESect-3.1 P-15ESect-3.1 P-16ESect-3.1 P-17ESect-3.1 P-18ESect-3.1 P-19ESect-3.1 P-20ESect-3.1 P-21ESect-3.1 P-22ESect-3.1 P-23ESect-3.1 P-24ESect-3.1 P-25ESect-3.1 P-26ESect-3.1 P-27ESect-3.1 P-28ESect-3.1 P-29ESect-3.1 P-30ESect-3.1 P-31ESect-3.1 P-32ESect-3.1 P-33ESect-3.1 P-34ESect-3.1 P-35ESect-3.1 P-36ESect-3.1 P-37ESect-3.1 P-38ESect-3.1 P-39ESect-3.1 P-40ESect-3.1 P-41ESect-3.1 P-42ESect-3.1 P-43ESect-3.1 P-44ESect-3.1 P-45ESect-3.1 P-46ESect-3.1 P-47ESect-3.1 P-48ESect-3.1 P-49ESect-3.1 P-50ESect-3.1 P-51ESect-3.1 P-52ESect-3.2 P-1TFESect-3.2 P-2TFESect-3.2 P-3TFESect-3.2 P-4TFESect-3.2 P-5TFESect-3.2 P-6TFESect-3.2 P-1ESect-3.2 P-2ESect-3.2 P-3ESect-3.2 P-4ESect-3.2 P-5ESect-3.2 P-6ESect-3.2 P-7ESect-3.2 P-8ESect-3.2 P-9ESect-3.2 P-10ESect-3.2 P-11ESect-3.2 P-12ESect-3.2 P-13ESect-3.2 P-14ESect-3.2 P-15ESect-3.2 P-16ESect-3.2 P-17ESect-3.2 P-18ESect-3.2 P-19ESect-3.2 P-20ESect-3.2 P-21ESect-3.2 P-22ESect-3.2 P-23ESect-3.2 P-24ESect-3.2 P-25ESect-3.2 P-26ESect-3.2 P-27ESect-3.2 P-28ESect-3.2 P-29ESect-3.2 P-30ESect-3.2 P-31ESect-3.2 P-32ESect-3.3 P-1TFESect-3.3 P-2TFESect-3.3 P-3TFESect-3.3 P-4TFESect-3.3 P-5TFESect-3.3 P-6TFESect-3.3 P-7TFESect-3.3 P-8TFESect-3.3 P-9TFESect-3.3 P-10TFESect-3.3 P-11TFESect-3.3 P-1ESect-3.3 P-2ESect-3.3 P-3ESect-3.3 P-4ESect-3.3 P-5ESect-3.3 P-6ESect-3.3 P-7ESect-3.3 P-8ESect-3.3 P-9ESect-3.3 P-10ESect-3.3 P-11ESect-3.3 P-12ESect-3.3 P-13ESect-3.3 P-14ESect-3.3 P-15ESect-3.3 P-16ESect-3.3 P-17ESect-3.3 P-18ESect-3.3 P-19ESect-3.3 P-20ESect-3.3 P-21ESect-3.3 P-22ESect-3.3 P-23ESect-3.3 P-24ESect-3.3 P-25ESect-3.3 P-26ESect-3.3 P-27ESect-3.3 P-28ESect-3.3 P-29ESect-3.3 P-30ESect-3.3 P-31ESect-3.3 P-32ESect-3.3 P-33ESect-3.3 P-34ESect-3.3 P-35ESect-3.3 P-36ESect-3.3 P-37ESect-3.3 P-38ESect-3.3 P-39ESect-3.3 P-40ESect-3.3 P-41ESect-3.3 P-42ESect-3.3 P-43ESect-3.3 P-44ESect-3.3 P-45ESect-3.4 P-1TFESect-3.4 P-2TFESect-3.4 P-3TFESect-3.4 P-4TFESect-3.4 P-5TFESect-3.4 P-6TFESect-3.4 P-7TFESect-3.4 P-8TFESect-3.4 P-9TFESect-3.4 P-10TFESect-3.4 P-1ESect-3.4 P-2ESect-3.4 P-3ESect-3.4 P-4ESect-3.4 P-5ESect-3.4 P-6ESect-3.4 P-7ESect-3.4 P-8ESect-3.4 P-9ESect-3.4 P-10ESect-3.4 P-11ESect-3.4 P-12ESect-3.4 P-13ESect-3.4 P-14ESect-3.4 P-15ESect-3.4 P-16ESect-3.4 P-17ESect-3.4 P-18ESect-3.4 P-19ESect-3.4 P-20ESect-3.4 P-21ESect-3.4 P-22ESect-3.4 P-23ESect-3.4 P-24ESect-3.4 P-25ESect-3.4 P-26ESect-3.4 P-27ESect-3.4 P-28ESect-3.4 P-29ESect-3.4 P-30ESect-3.4 P-31ESect-3.4 P-32ESect-3.4 P-33ESect-3.4 P-34ESect-3.4 P-35ESect-3.4 P-36ESect-3.4 P-37ESect-3.4 P-38ESect-3.4 P-39ESect-3.4 P-40ESect-3.4 P-41ESect-3.4 P-42ESect-3.5 P-1TFESect-3.5 P-2TFESect-3.5 P-3TFESect-3.5 P-4TFESect-3.5 P-5TFESect-3.5 P-6TFESect-3.5 P-7TFESect-3.5 P-8TFESect-3.5 P-1ESect-3.5 P-2ESect-3.5 P-3ESect-3.5 P-4ESect-3.5 P-5ESect-3.5 P-6ESect-3.5 P-7ESect-3.5 P-8ESect-3.5 P-9ESect-3.5 P-10ESect-3.5 P-11ESect-3.5 P-12ESect-3.5 P-13ESect-3.5 P-14ESect-3.5 P-15ESect-3.5 P-16ESect-3.5 P-17ESect-3.5 P-18ESect-3.5 P-19ESect-3.5 P-20ESect-3.5 P-21ESect-3.5 P-22ESect-3.5 P-23ESect-3.5 P-24ESect-3.5 P-25ESect-3.5 P-26ESect-3.5 P-27ESect-3.5 P-28ESect-3.5 P-29ESect-3.5 P-30ESect-3.5 P-31ESect-3.5 P-32ESect-3.5 P-33ESect-3.5 P-34ESect-3.5 P-35ESect-3.5 P-36ESect-3.5 P-37ESect-3.5 P-38ESect-3.5 P-39ESect-3.6 P-1TFESect-3.6 P-2TFESect-3.6 P-3TFESect-3.6 P-4TFESect-3.6 P-5TFESect-3.6 P-6TFESect-3.6 P-7TFESect-3.6 P-8TFESect-3.6 P-9TFESect-3.6 P-10TFESect-3.6 P-1ESect-3.6 P-2ESect-3.6 P-3ESect-3.6 P-4ESect-3.6 P-5ESect-3.6 P-6ESect-3.6 P-7ESect-3.6 P-8ESect-3.6 P-9ESect-3.6 P-10ESect-3.6 P-11ESect-3.6 P-12ESect-3.6 P-13ESect-3.6 P-14ESect-3.6 P-15ESect-3.6 P-16ESect-3.6 P-17ESect-3.6 P-18ESect-3.6 P-19ESect-3.6 P-20ESect-3.6 P-21ESect-3.6 P-22ESect-3.6 P-23ESect-3.6 P-24ESect-3.6 P-25E

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

In Exercises 4144, determine whether the statement is true or false. 42. 5 5

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Solve the equations in Exercises 126. (x2+1)(x+1)43(x+1)73=0

Finite Mathematics and Applied Calculus (MindTap Course List)

Evaluate the integral. 14yyy2dy

Single Variable Calculus: Early Transcendentals, Volume I

45. Write the equation of the line tangent to the curve

Mathematical Applications for the Management, Life, and Social Sciences

Explain the difference between r and .

Introduction To Statistics And Data Analysis

limh04+h2h is the derivative of: a) f(x)=4+x at x = 2 b) f(x)=x at x = 4 c) f(x)=x at x = 2 d) f(x)=4+h2h at x ...

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

Which is the best graph of r = 1 − sin θ for 0 ≤ θ ≤ π?

Study Guide for Stewart's Multivariable Calculus, 8th

What is the primary factor that determines when it is time to change phases?

Research Methods for the Behavioral Sciences (MindTap Course List)