Physics for Scientists and Engineers with Modern Physics
Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 31, Problem 38AP

(a)

To determine

The inductor behaves like an open circuit or short circuit or a resister of some particular resistance or none of those choices before the switch is opened.

(b)

To determine

The current carried by the inductor.

(c)

To determine

The energy stored in the inductor.

(d)

To determine

The energy previously stored in the inductor after the switch is opened.

(e)

To determine

To draw: The graph of the current in the inductor for t0 with the initial and final values and the time constant.

Blurred answer
Students have asked these similar questions
A conducting bar of length l moves to the right on two frictionless rails as shown in Figure P31.34. A uniform magnetic field directed into the page has a magnitude of 0.300 T. Assume R = 9.00 Ohm and l = 0.350 m. At what constant speed should the bar move to produce an 8.50-mA current in the resistor? What is the direction of the induced current? At what rate is energy delivered to the resistor? Explain the origin of the energy being delivered to the resistor. snipp
A conducting circular loop of wire with radius 0.0300 m and resistance 0.40 Ω sits in a region of spatially uniform magnetic field, as shown in the figure. The magnetic field is directed into the plane of the figure and it changes in time with the expression B(t) = 1.080 T - (0.360 T/s )∙t  (here T represents the unit Tesla and t is the time)a) Give the magnetic flux through the loop as a function of time.b) Give the EMF induced in the loop as a function of time.c) Calculate the induced current at time t = 1.0 s. Show the steps that lead to youranswers.d) What is the direction of the current in the loop at t = 1.0 s? Explain/justify youranswer
A charged capacitor and an inductor are connected at time t = 0. In terms of the period T of the resulting oscillations, what is the first later time at which the following reach a maximum: (a) UB, (b) the magnetic flux through the inductor, (c) di/dt, and (d) the emf of the inductor?

Chapter 31 Solutions

Physics for Scientists and Engineers with Modern Physics

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning