Physics for Scientists and Engineers
Physics for Scientists and Engineers
10th Edition
ISBN: 9781337553278
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Videos

Textbook Question
Chapter 31, Problem 42AP

You are working on an LC circuit for an experiment you are performing in your basement. You have an appropriate capacitor, but you need to build your own inductor. You wish to cut a wooden ring with a rectangular cross section, as shown in Figure P31.41, from wood with thickness h. You want to wrap N turns of wire around it to form a toroidal inductor. For your experiment, you need to have energy UB stored in the inductor when it carries a current i. In order to cut the appropriate wooden ring, you need to determine the ratio b/a. Ignore any effect of the wood core on the magnetic field.

Blurred answer
Students have asked these similar questions
In an oscillating LC circuit in which C = 4.5 μF, the maximum potential difference across the capacitor during the oscillations is 1.5 V and the maximum current through the inductor is 52.8 mA. What are (a) the inductance L and (b) the frequency of the oscillations? (c) How much time is required for the charge on the capacitor to rise from zero to its maximum value?
In a certain oscillating LC circuit, the total energy is converted from electrical energy in the capacitor to magnetic energy in the inductor in 1.50 ms. What are (a) the period of oscillation and (b) the frequency of oscillation? (c) How long after the magnetic energy is a maximum will it be a maximum again?
An LC circuit containing a 2.00-H inductor oscillates at such a frequency that it radiates at a 1.00-m wavelength. (a) What is the capacitance of the circuit? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?

Chapter 31 Solutions

Physics for Scientists and Engineers

Ch. 31 - A toroid has a major radius R and a minor radius r...Ch. 31 - Prob. 7PCh. 31 - Prob. 8PCh. 31 - Prob. 9PCh. 31 - Prob. 10PCh. 31 - Prob. 11PCh. 31 - Show that i = Iiet/ is a solution of the...Ch. 31 - Prob. 13PCh. 31 - You are working as a demonstration assistant for a...Ch. 31 - Prob. 15PCh. 31 - The switch in Figure P31.15 is open for t 0 and...Ch. 31 - Prob. 17PCh. 31 - Two ideal inductors, L1 and L2, have zero internal...Ch. 31 - Prob. 19PCh. 31 - Prob. 20PCh. 31 - Prob. 21PCh. 31 - Complete the calculation in Example 31.3 by...Ch. 31 - Prob. 23PCh. 31 - A flat coil of wire has an inductance of 40.0 mH...Ch. 31 - Prob. 25PCh. 31 - Prob. 26PCh. 31 - Prob. 27PCh. 31 - Prob. 28PCh. 31 - In the circuit of Figure P31.29, the battery emf...Ch. 31 - Prob. 30PCh. 31 - An LC circuit consists of a 20.0-mH inductor and a...Ch. 31 - Prob. 32PCh. 31 - In Figure 31.15, let R = 7.60 , L = 2.20 mH, and C...Ch. 31 - Prob. 34PCh. 31 - Electrical oscillations are initiated in a series...Ch. 31 - Review. Consider a capacitor with vacuum between...Ch. 31 - A capacitor in a series LC circuit has an initial...Ch. 31 - Prob. 38APCh. 31 - Prob. 39APCh. 31 - At the moment t = 0, a 24.0-V battery is connected...Ch. 31 - Prob. 41APCh. 31 - You are working on an LC circuit for an experiment...Ch. 31 - Prob. 43APCh. 31 - Prob. 44APCh. 31 - Prob. 45APCh. 31 - At t = 0, the open switch in Figure P31.46 is...Ch. 31 - Review. The use of superconductors has been...Ch. 31 - Review. A fundamental property of a type 1...Ch. 31 - Prob. 49APCh. 31 - In earlier times when many households received...Ch. 31 - Assume the magnitude of the magnetic field outside...Ch. 31 - Prob. 52CPCh. 31 - Prob. 53CP
Knowledge Booster
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • When a wire carries an AC current with a known frequency, you can use a Rogowski coil to determine the amplitude Imax of the current without disconnecting the wire to shunt the current through a meter. The Rogowski coil, shown in Figure P23.8, simply clips around the wire. It consists of a toroidal conductor wrapped around a circular return cord. Let n represent the number of turns in the toroid per unit distance along it. Let A represent the cross-sectional area of the toroid. Let I(t) = Imax sin t represent the current to be measured. (a) Show that the amplitude of the emf induced in the Rogowski coil is Emax=0nAImax. (b) Explain why the wire carrying the unknown current need not be at the center of the Rogowski coil and why the coil will not respond to nearby currents that it does not enclose. Figure P23.8
    In the LC circuit in Figure 33.11, the inductance is L = 19.8 mH and the capacitance is C = 19.6 mF. At some moment, UB = UE= 17.5 mJ. a. What is the maximum charge stored by the capacitor? b. What is the maximum current in the circuit? c. At t = 0, the capacitor is fully charged. Write an expression for the charge stored by the capacitor as a function of lime. d. Write an expression for the current as a function of time.
    A rectangular loop of length L and width W is placed in a uniform magnetic field B with its plane perpendicular to the field (Fig. P32.7). Determine the time-averaged induced emf if the loop rotatas with constant angular velocity through an angle of 180 around an axis passing through the loops center a. perpendicular to the loop and b. parallel to its width.
  • A series RLC circuit driven by a source with an amplitude of 120.0 V and a frequency of 50.0 Hz has an inductance of 787 mH, a resistance of 267 , and a capacitance of 45.7 F. a. What are the maximum current and the phase angle between the current and the source emf in this circuit? b. What are the maximum potential difference across the inductor and the phase angle between this potential difference and the current in the circuit? c. What are the maximum potential difference across the resistor and the phase angle between this potential difference and the current in this circuit? d. What are the maximum potential difference across the capacitor and the phase angle between this potential difference and the current in this circuit?
    In an oscillating LC circuit, L = 25.0 mH and C = 7.80 mF. At time t 0 the current is 9.20 mA, the charge on the capacitor is 3.80 mC, and the capacitor is charging.What are (a) the total energy in the circuit, (b) the maximum charge on the capacitor, and (c) the maximum current? (d) If the charge on the capacitor is given by q = Q cos(vt + f), what is the phase angle f? (e) Suppose the data are the same, except that the capacitor is discharging at t = 0.What then is f?
    In an oscillating LC circuit in which C = 4.0 μF, the maximum potential difference across the capacitor during the oscillation is 1.50 V and the maximum current through the inductor is 50.0 mA.(A) Find the inductance L and frequency of the oscillations? (B) How much time is required for the charge on capacitor to rise from zero to its maximum value. (C) How you can transform this oscillating circuit to a damped oscillating circuit.
    Recommended textbooks for you
  • Physics for Scientists and Engineers with Modern ...
    Physics
    ISBN:9781337553292
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    Physics for Scientists and Engineers
    Physics
    ISBN:9781337553278
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    Principles of Physics: A Calculus-Based Text
    Physics
    ISBN:9781133104261
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
  • Physics for Scientists and Engineers: Foundations...
    Physics
    ISBN:9781133939146
    Author:Katz, Debora M.
    Publisher:Cengage Learning
  • Physics for Scientists and Engineers with Modern ...
    Physics
    ISBN:9781337553292
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    Physics for Scientists and Engineers
    Physics
    ISBN:9781337553278
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    Principles of Physics: A Calculus-Based Text
    Physics
    ISBN:9781133104261
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    Physics for Scientists and Engineers: Foundations...
    Physics
    ISBN:9781133939146
    Author:Katz, Debora M.
    Publisher:Cengage Learning
    Introduction To Alternating Current; Author: Tutorials Point (India) Ltd;https://www.youtube.com/watch?v=0m142qAZZpE;License: Standard YouTube License, CC-BY