BuyFindarrow_forward

Finite Mathematics for the Manager...

12th Edition
Soo T. Tan
ISBN: 9781337405782

Solutions

Chapter
Section
BuyFindarrow_forward

Finite Mathematics for the Manager...

12th Edition
Soo T. Tan
ISBN: 9781337405782
Textbook Problem

The problems in Exercises 31-51 correspond to those in Exercises 1-21, Section 3.2. Use the results of your previous work to help you solve these problems. 31.

PRODUCTION SCHEDULING Kane Manufacturing has a division that produces two models of fireplace grates, model A and model B. To produce each model A grate requires 3 lb of cast iron and 6 min of labor. To produce each model B grate requires 4 lb of cast iron and 3 min of labor. The profit for each model A grate is $ 2.00 , and the profit for each model B grate is $ 1.50 If 1000 lb of cast iron and 20 labor-hours are available for the production of fireplace grates per day, how may grates of each model should the division produce to maximize Kane's profit? What is the optimal profit?

To determine

The number of grates of each model that should be produced in per day to maximize the Kane`s profit and optimal profit.

Explanation

Given:

Tabulate the given information.

Models Cast iron Time (in min) Profit ( in $ )
A 3lb 6m $2.00
B 4lb 3m $1.50

Approach:

Assume x is the no. of units to manufacture the model A and y is the no. of units to manufacture the model B. So, the total profit P (in dollars) is P=2x+1.5y and this is the objective function to be maximized.

The total amount for Cast iron is given by 3x+4y and must not exceed 1000lb. So, the inequality is,

3x+4y1000

The total amount of time is given by 6x+3y and must not exceed 1200.So, the inequality is,

6x+3y1200

As neither x nor y will be negative so,

x0y0

Calculation:

Consider the given inequalities.

3x+4y10006x+3y1200

Replace the inequality sign with equality sign in the above linear inequalities and write them in intercept form.

3x+4y=10003x1000+y250=1

So, the coordinates are (33.33,0) and (0,250).

Also,

6x+3y=1200x200+y400=1

So, the coordinates are (200,0) and (0,400)

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-3.1 P-9ESect-3.1 P-10ESect-3.1 P-11ESect-3.1 P-12ESect-3.1 P-13ESect-3.1 P-14ESect-3.1 P-15ESect-3.1 P-16ESect-3.1 P-17ESect-3.1 P-18ESect-3.1 P-19ESect-3.1 P-20ESect-3.1 P-21ESect-3.1 P-22ESect-3.1 P-23ESect-3.1 P-24ESect-3.1 P-25ESect-3.1 P-26ESect-3.1 P-27ESect-3.1 P-28ESect-3.1 P-29ESect-3.1 P-30ESect-3.1 P-31ESect-3.1 P-32ESect-3.1 P-33ESect-3.1 P-34ESect-3.1 P-35ESect-3.1 P-36ESect-3.1 P-37ESect-3.1 P-38ESect-3.1 P-39ESect-3.1 P-40ESect-3.1 P-41ESect-3.1 P-42ESect-3.1 P-43ESect-3.1 P-44ESect-3.1 P-45ESect-3.1 P-46ESect-3.1 P-47ESect-3.1 P-48ESect-3.2 P-1CQSect-3.2 P-2CQSect-3.2 P-3CQSect-3.2 P-1ESect-3.2 P-2ESect-3.2 P-3ESect-3.2 P-4ESect-3.2 P-5ESect-3.2 P-6ESect-3.2 P-7ESect-3.2 P-8ESect-3.2 P-9ESect-3.2 P-10ESect-3.2 P-11ESect-3.2 P-12ESect-3.2 P-13ESect-3.2 P-14ESect-3.2 P-15ESect-3.2 P-16ESect-3.2 P-17ESect-3.2 P-18ESect-3.2 P-19ESect-3.2 P-20ESect-3.2 P-21ESect-3.2 P-22ESect-3.2 P-23ESect-3.2 P-24ESect-3.2 P-25ESect-3.2 P-26ESect-3.2 P-27ESect-3.2 P-28ESect-3.2 P-29ESect-3.2 P-30ESect-3.2 P-31ESect-3.2 P-32ESect-3.2 P-33ESect-3.2 P-34ESect-3.3 P-1CQSect-3.3 P-2CQSect-3.3 P-1ESect-3.3 P-2ESect-3.3 P-3ESect-3.3 P-4ESect-3.3 P-5ESect-3.3 P-6ESect-3.3 P-7ESect-3.3 P-8ESect-3.3 P-9ESect-3.3 P-10ESect-3.3 P-11ESect-3.3 P-12ESect-3.3 P-13ESect-3.3 P-14ESect-3.3 P-15ESect-3.3 P-16ESect-3.3 P-17ESect-3.3 P-18ESect-3.3 P-19ESect-3.3 P-20ESect-3.3 P-21ESect-3.3 P-22ESect-3.3 P-23ESect-3.3 P-24ESect-3.3 P-25ESect-3.3 P-26ESect-3.3 P-27ESect-3.3 P-28ESect-3.3 P-29ESect-3.3 P-30ESect-3.3 P-31ESect-3.3 P-32ESect-3.3 P-33ESect-3.3 P-34ESect-3.3 P-35ESect-3.3 P-36ESect-3.3 P-37ESect-3.3 P-38ESect-3.3 P-39ESect-3.3 P-40ESect-3.3 P-41ESect-3.3 P-42ESect-3.3 P-43ESect-3.3 P-44ESect-3.3 P-45ESect-3.3 P-46ESect-3.3 P-47ESect-3.3 P-48ESect-3.3 P-49ESect-3.3 P-50ESect-3.3 P-51ESect-3.3 P-52ESect-3.3 P-53ESect-3.3 P-54ESect-3.3 P-55ESect-3.3 P-56ESect-3.3 P-57ESect-3.3 P-58ESect-3.3 P-59ESect-3.3 P-60ESect-3.3 P-61ESect-3.3 P-62ESect-3.3 P-63ESect-3.3 P-64ESect-3.4 P-1CQSect-3.4 P-2CQSect-3.4 P-3CQSect-3.4 P-1ESect-3.4 P-2ESect-3.4 P-3ESect-3.4 P-4ESect-3.4 P-5ESect-3.4 P-6ESect-3.4 P-7ESect-3.4 P-8ESect-3.4 P-9ESect-3.4 P-10ESect-3.4 P-11ESect-3.4 P-12ESect-3.4 P-13ESect-3.4 P-14ESect-3.4 P-15ESect-3.4 P-16ESect-3.4 P-17ESect-3.4 P-18ESect-3.CRQ P-1CRQSect-3.CRQ P-2CRQSect-3.CRQ P-3CRQSect-3.CRQ P-4CRQSect-3.CRQ P-5CRQSect-3.CRQ P-6CRQSect-3.CRE P-1CRESect-3.CRE P-2CRESect-3.CRE P-3CRESect-3.CRE P-4CRESect-3.CRE P-5CRESect-3.CRE P-6CRESect-3.CRE P-7CRESect-3.CRE P-8CRESect-3.CRE P-9CRESect-3.CRE P-10CRESect-3.CRE P-11CRESect-3.CRE P-12CRESect-3.CRE P-13CRESect-3.CRE P-14CRESect-3.CRE P-15CRESect-3.CRE P-16CRESect-3.CRE P-17CRESect-3.CRE P-18CRESect-3.BMO P-1BMOSect-3.BMO P-2BMOSect-3.BMO P-3BMOSect-3.BMO P-4BMOSect-3.BMO P-5BMO

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Differentiate the function. f(x) = 5.2x + 2.3

Calculus: Early Transcendentals

In Exercises 69-74, rationalize the numerator. 74. x2y32x

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Finding a Derivative In Exercises 57- 82, find the derivative of the function. y=(x26)3

Calculus: Early Transcendental Functions (MindTap Course List)

Finding Limits Evaluate the limit if it exists. 19. limx2x2+x6x2

Precalculus: Mathematics for Calculus (Standalone Book)

Evaluate the expression sin Exercises 116. (2)3

Finite Mathematics and Applied Calculus (MindTap Course List)