BuyFindarrow_forward

Elementary Geometry for College St...

6th Edition
Daniel C. Alexander + 1 other
ISBN: 9781285195698

Solutions

Chapter
Section
BuyFindarrow_forward

Elementary Geometry for College St...

6th Edition
Daniel C. Alexander + 1 other
ISBN: 9781285195698
Textbook Problem
1 views

In Exercises 44 to 46, explain why each statement is true.

The bisectors of the base angles of an isosceles triangle, together with the base, form an isosceles triangle.

To determine

To explain:

The bisectors of the base angles of an isosceles triangle, together with the base, form an isosceles triangle.

Explanation

Procedure used:

(1) If two congruent angles are bisected, then the bisected parts of angles are also congruent.

(2) If two angles of a triangle are congruent, then the triangle is an isosceles triangle.

Given:

An isosceles ΔPMN is given and MQ¯ bisects M and NQ¯ bisects N.

Figure (1)

Calculation:

ΔPMN is an isosceles triangle.

MNmM=mN (1)

MQ¯ bisects M.

mQMN=12mMmM=2(mQMN)

NQ¯ bisects N

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-3.1 P-11ESect-3.1 P-12ESect-3.1 P-13ESect-3.1 P-14ESect-3.1 P-15ESect-3.1 P-16ESect-3.1 P-17ESect-3.1 P-18ESect-3.1 P-19ESect-3.1 P-20ESect-3.1 P-21ESect-3.1 P-22ESect-3.1 P-23ESect-3.1 P-24ESect-3.1 P-25ESect-3.1 P-26ESect-3.1 P-27ESect-3.1 P-28ESect-3.1 P-29ESect-3.1 P-30ESect-3.1 P-31ESect-3.1 P-32ESect-3.1 P-33ESect-3.1 P-34ESect-3.1 P-35ESect-3.1 P-36ESect-3.1 P-37ESect-3.1 P-38ESect-3.1 P-39ESect-3.1 P-40ESect-3.1 P-41ESect-3.2 P-1ESect-3.2 P-2ESect-3.2 P-3ESect-3.2 P-4ESect-3.2 P-5ESect-3.2 P-6ESect-3.2 P-7ESect-3.2 P-8ESect-3.2 P-9ESect-3.2 P-10ESect-3.2 P-11ESect-3.2 P-12ESect-3.2 P-13ESect-3.2 P-14ESect-3.2 P-15ESect-3.2 P-16ESect-3.2 P-17ESect-3.2 P-18ESect-3.2 P-19ESect-3.2 P-20ESect-3.2 P-21ESect-3.2 P-22ESect-3.2 P-23ESect-3.2 P-24ESect-3.2 P-25ESect-3.2 P-26ESect-3.2 P-27ESect-3.2 P-28ESect-3.2 P-29ESect-3.2 P-30ESect-3.2 P-31ESect-3.2 P-32ESect-3.2 P-33ESect-3.2 P-34ESect-3.2 P-35ESect-3.2 P-36ESect-3.2 P-37ESect-3.2 P-38ESect-3.2 P-39ESect-3.2 P-40ESect-3.3 P-1ESect-3.3 P-2ESect-3.3 P-3ESect-3.3 P-4ESect-3.3 P-5ESect-3.3 P-6ESect-3.3 P-7ESect-3.3 P-8ESect-3.3 P-9ESect-3.3 P-10ESect-3.3 P-11ESect-3.3 P-12ESect-3.3 P-13ESect-3.3 P-14ESect-3.3 P-15ESect-3.3 P-16ESect-3.3 P-17ESect-3.3 P-18ESect-3.3 P-19ESect-3.3 P-20ESect-3.3 P-21ESect-3.3 P-22ESect-3.3 P-23ESect-3.3 P-24ESect-3.3 P-25ESect-3.3 P-26ESect-3.3 P-27ESect-3.3 P-28ESect-3.3 P-29ESect-3.3 P-30ESect-3.3 P-31ESect-3.3 P-32ESect-3.3 P-33ESect-3.3 P-34ESect-3.3 P-35ESect-3.3 P-36ESect-3.3 P-37ESect-3.3 P-38ESect-3.3 P-39ESect-3.3 P-40ESect-3.3 P-41ESect-3.3 P-42ESect-3.3 P-43ESect-3.3 P-44ESect-3.3 P-45ESect-3.3 P-46ESect-3.3 P-47ESect-3.3 P-48ESect-3.4 P-1ESect-3.4 P-2ESect-3.4 P-3ESect-3.4 P-4ESect-3.4 P-5ESect-3.4 P-6ESect-3.4 P-7ESect-3.4 P-8ESect-3.4 P-9ESect-3.4 P-10ESect-3.4 P-11ESect-3.4 P-12ESect-3.4 P-13ESect-3.4 P-14ESect-3.4 P-15ESect-3.4 P-16ESect-3.4 P-17ESect-3.4 P-18ESect-3.4 P-19ESect-3.4 P-20ESect-3.4 P-21ESect-3.4 P-22ESect-3.4 P-23ESect-3.4 P-24ESect-3.4 P-25ESect-3.4 P-26ESect-3.4 P-27ESect-3.4 P-28ESect-3.4 P-29ESect-3.4 P-30ESect-3.4 P-31ESect-3.4 P-32ESect-3.4 P-33ESect-3.4 P-34ESect-3.4 P-35ESect-3.4 P-36ESect-3.4 P-37ESect-3.4 P-38ESect-3.4 P-39ESect-3.4 P-40ESect-3.5 P-1ESect-3.5 P-2ESect-3.5 P-3ESect-3.5 P-4ESect-3.5 P-5ESect-3.5 P-6ESect-3.5 P-7ESect-3.5 P-8ESect-3.5 P-9ESect-3.5 P-10ESect-3.5 P-11ESect-3.5 P-12ESect-3.5 P-13ESect-3.5 P-14ESect-3.5 P-15ESect-3.5 P-16ESect-3.5 P-17ESect-3.5 P-18ESect-3.5 P-19ESect-3.5 P-20ESect-3.5 P-21ESect-3.5 P-22ESect-3.5 P-23ESect-3.5 P-24ESect-3.5 P-25ESect-3.5 P-26ESect-3.5 P-27ESect-3.5 P-28ESect-3.5 P-29ESect-3.5 P-30ESect-3.5 P-31ESect-3.5 P-32ESect-3.5 P-33ESect-3.5 P-34ESect-3.5 P-35ESect-3.5 P-36ESect-3.5 P-37ESect-3.5 P-38ESect-3.CR P-1CRSect-3.CR P-2CRSect-3.CR P-3CRSect-3.CR P-4CRSect-3.CR P-5CRSect-3.CR P-6CRSect-3.CR P-7CRSect-3.CR P-8CRSect-3.CR P-9CRSect-3.CR P-10CRSect-3.CR P-11CRSect-3.CR P-12CRSect-3.CR P-13CRSect-3.CR P-14CRSect-3.CR P-15CRSect-3.CR P-16CRSect-3.CR P-17CRSect-3.CR P-18CRSect-3.CR P-19CRSect-3.CR P-20CRSect-3.CR P-21CRSect-3.CR P-22CRSect-3.CR P-23CRSect-3.CR P-24CRSect-3.CR P-25CRSect-3.CR P-26CRSect-3.CR P-27CRSect-3.CR P-28CRSect-3.CR P-29CRSect-3.CT P-1CTSect-3.CT P-2CTSect-3.CT P-3CTSect-3.CT P-4CTSect-3.CT P-5CTSect-3.CT P-6CTSect-3.CT P-7CTSect-3.CT P-8CTSect-3.CT P-9CTSect-3.CT P-10CTSect-3.CT P-11CTSect-3.CT P-12CTSect-3.CT P-13CTSect-3.CT P-14CTSect-3.CT P-15CTSect-3.CT P-16CTSect-3.CT P-17CTSect-3.CT P-18CTSect-3.CT P-19CT

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Solve the equations in Exercises 112 for x (mentally, if possible). x1=cx+d(c1)

Finite Mathematics and Applied Calculus (MindTap Course List)

Factor each trinomial completely: b2+b30

Elementary Technical Mathematics

Evaluate the limit, if it exists. limx12x2+3x+1x22x3

Single Variable Calculus: Early Transcendentals, Volume I

In words, explain what is measured by SS, variance, and standard deviation.

Statistics for The Behavioral Sciences (MindTap Course List)

f(x)=1x2+1; limxf(x); and limxf(x) x 1 10 100 1000 f(x) x 1 10 100 1000 f(x)

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

For y = (x3 + 1)2, y = _____. a) 2x(x3 + 1) b) 6x(x3 + 1) c) 6x2(x3 + 1) d) 3x2(x3 + 1)

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

Explain how the mean and the standard deviation describe a distribution of scores.

Research Methods for the Behavioral Sciences (MindTap Course List)