Operations Research : Applications and Algorithms
Operations Research : Applications and Algorithms
4th Edition
ISBN: 9780534380588
Author: Wayne L. Winston
Publisher: Brooks Cole
Expert Solution & Answer
Book Icon
Chapter 3.4, Problem 1P

Explanation of Solution

Given:

From the given scenario, it is given that the three factories are available on the Momiss River. There are two types of pollutants emitted into the river and the if the waster form the factory is processed, the pollution in the river can be reduced.

Processing cost for factory 1 waste: $15

Processing cost for factory 2 waste: $10

Processing cost for factory 3 waste: $20

Consider the variable to represent the amount of waste in factory 1 is x1

Consider the variable to represent the amount of waste in factory 2 is x2

Consider the variable to represent the amount of waste in factory 3 is x3

Total cost={(Dollars per ton of factory 1 waste)(Amount of waste in factory1)+(Dollars per ton of factory 2 waste)(Amount of waste in factory2)+(Dollars per ton of factory 3 waste)(Amount of waste in factory3)} =15x1+10x2+20x3

The objective function obtained from the above calculation is

Maximizez=15x1+10x2+20x3

Considering the constraints,

Constraint 1: At least 30 tons of pollutant 1 must be reduced in the river.

Constraint 2: At least 40 tons of pollutant 2 must be reduced in the river

Blurred answer
Students have asked these similar questions
A farmer is planning to raise wheat and barley. Each acre of wheat yields a profit of $50, and each acre of barley yields a profit of $70. To sow the crop, two machines, a tractor and a tiller are rented. The tractor is available for 150 hours, and the tiller is available for 200 hours. Sowing an acre of wheat requires 4 hours of tractor time and 1 hour of tilling. Sowing an acre of barley requires 3 hours of tractor time and 2 hours of tilling. How many acres of each crop should be planted to maximize the farmer’s profit? (Let W be the number of acres of wheat to be planted, B the number of acres of barley to be planted and P the profit) What is the objective function for the problem? Excluding the non-negative constraint, how many constraints does the problem have? What is the linear programming model of the problem? In the initial tableau, what is the leaving variable? What is the pivot element in the initial tableau? What is the optimal solution to the problem? After how many…
You are given some tasks of size xK, yK and zK respectively and there are at most 9 tasks each. Determine the best that you could achieve if you are to fill up a hole of size SK, for the following values of x, y, z and S, by maximizing the space used (up to S), i.e. minimizing the used space, if any. Show how many tasks of size x, how many tasks of size y and how many tasks of size z are used in each of the three cases. (g) Now if we relax the requirement so that there are no upper limits on the number of tasks for each type, determine the maximal space usage and the task mix. (h) If we tighten the requirement so that there are still at most 9 tasks of each size, but we also require that each type of tasks must be used at least once, determine maximal space usage and the task mix. Case 1 2 3 X 22 26 28 y 33 43 65 50 77 74 S 488 556 777 You could complete the following table. Fill in the number of tasks inside the brackets and the corresponding maximal usage. (At most 9 tasks each (g)…
At the beginning of the first day (day 1) after grape harvesting is completed, a grape grower has 8000 kg of grapes in storage. On day n, for n = 1, 2, . . . ,the grape grower sells 250n/(n + 1) kg of the grapes at the local market at the priceof $2.50 per kg. He leaves the rest of the grapes in storage where each day they dryout a little so that their weight decreases by 3%. Let wn be the weight (in kg) ofthe stored grapes at the beginning of day n for n ≥ 1 (before he takes any to themarket).(a) Find the value of wn for n = 2.(b) Find a recursive definition for wn. (You may find it helpful to draw a timeline.)(c) Let rn be the total revenue (in dollars) earned from the stored grapes from thebeginning of day 1 up to the beginning of day n for n ≥ 1. Find a recursiveformula for rn.(d) Write a MATLAB program to compute wn and rn for n = 1, 2, . . . , num wherenum is entered by the user, and display the values in three columns: n, wn, rnwith appropriate headings.Run the program for num =…

Chapter 3 Solutions

Operations Research : Applications and Algorithms

Ch. 3.2 - Prob. 6PCh. 3.3 - Prob. 1PCh. 3.3 - Prob. 2PCh. 3.3 - Prob. 3PCh. 3.3 - Prob. 4PCh. 3.3 - Prob. 5PCh. 3.3 - Prob. 6PCh. 3.3 - Prob. 7PCh. 3.3 - Prob. 8PCh. 3.3 - Prob. 9PCh. 3.3 - Prob. 10PCh. 3.4 - Prob. 1PCh. 3.4 - Prob. 2PCh. 3.4 - Prob. 3PCh. 3.4 - Prob. 4PCh. 3.5 - Prob. 1PCh. 3.5 - Prob. 2PCh. 3.5 - Prob. 3PCh. 3.5 - Prob. 4PCh. 3.5 - Prob. 5PCh. 3.5 - Prob. 6PCh. 3.5 - Prob. 7PCh. 3.6 - Prob. 1PCh. 3.6 - Prob. 2PCh. 3.6 - Prob. 3PCh. 3.6 - Prob. 4PCh. 3.6 - Prob. 5PCh. 3.7 - Prob. 1PCh. 3.8 - Prob. 1PCh. 3.8 - Prob. 2PCh. 3.8 - Prob. 3PCh. 3.8 - Prob. 4PCh. 3.8 - Prob. 5PCh. 3.8 - Prob. 6PCh. 3.8 - Prob. 7PCh. 3.8 - Prob. 8PCh. 3.8 - Prob. 9PCh. 3.8 - Prob. 10PCh. 3.8 - Prob. 11PCh. 3.8 - Prob. 12PCh. 3.8 - Prob. 13PCh. 3.8 - Prob. 14PCh. 3.9 - Prob. 1PCh. 3.9 - Prob. 2PCh. 3.9 - Prob. 3PCh. 3.9 - Prob. 4PCh. 3.9 - Prob. 5PCh. 3.9 - Prob. 6PCh. 3.9 - Prob. 7PCh. 3.9 - Prob. 8PCh. 3.9 - Prob. 9PCh. 3.9 - Prob. 10PCh. 3.9 - Prob. 11PCh. 3.9 - Prob. 12PCh. 3.9 - Prob. 13PCh. 3.9 - Prob. 14PCh. 3.10 - Prob. 1PCh. 3.10 - Prob. 2PCh. 3.10 - Prob. 3PCh. 3.10 - Prob. 4PCh. 3.10 - Prob. 5PCh. 3.10 - Prob. 6PCh. 3.10 - Prob. 7PCh. 3.10 - Prob. 8PCh. 3.10 - Prob. 9PCh. 3.11 - Prob. 1PCh. 3.11 - Show that Finco’s objective function may also be...Ch. 3.11 - Prob. 3PCh. 3.11 - Prob. 4PCh. 3.11 - Prob. 7PCh. 3.11 - Prob. 8PCh. 3.11 - Prob. 9PCh. 3.12 - Prob. 2PCh. 3.12 - Prob. 3PCh. 3.12 - Prob. 4PCh. 3 - Prob. 1RPCh. 3 - Prob. 2RPCh. 3 - Prob. 3RPCh. 3 - Prob. 4RPCh. 3 - Prob. 5RPCh. 3 - Prob. 6RPCh. 3 - Prob. 7RPCh. 3 - Prob. 8RPCh. 3 - Prob. 9RPCh. 3 - Prob. 10RPCh. 3 - Prob. 11RPCh. 3 - Prob. 12RPCh. 3 - Prob. 13RPCh. 3 - Prob. 14RPCh. 3 - Prob. 15RPCh. 3 - Prob. 16RPCh. 3 - Prob. 17RPCh. 3 - Prob. 18RPCh. 3 - Prob. 19RPCh. 3 - Prob. 20RPCh. 3 - Prob. 21RPCh. 3 - Prob. 22RPCh. 3 - Prob. 23RPCh. 3 - Prob. 24RPCh. 3 - Prob. 25RPCh. 3 - Prob. 26RPCh. 3 - Prob. 27RPCh. 3 - Prob. 28RPCh. 3 - Prob. 29RPCh. 3 - Prob. 30RPCh. 3 - Graphically find all solutions to the following...Ch. 3 - Prob. 32RPCh. 3 - Prob. 33RPCh. 3 - Prob. 34RPCh. 3 - Prob. 35RPCh. 3 - Prob. 36RPCh. 3 - Prob. 37RPCh. 3 - Prob. 38RPCh. 3 - Prob. 39RPCh. 3 - Prob. 40RPCh. 3 - Prob. 41RPCh. 3 - Prob. 42RPCh. 3 - Prob. 43RPCh. 3 - Prob. 44RPCh. 3 - Prob. 45RPCh. 3 - Prob. 46RPCh. 3 - Prob. 47RPCh. 3 - Prob. 48RPCh. 3 - Prob. 49RPCh. 3 - Prob. 50RPCh. 3 - Prob. 51RPCh. 3 - Prob. 52RPCh. 3 - Prob. 53RPCh. 3 - Prob. 54RPCh. 3 - Prob. 56RPCh. 3 - Prob. 57RPCh. 3 - Prob. 58RPCh. 3 - Prob. 59RPCh. 3 - Prob. 60RPCh. 3 - Prob. 61RPCh. 3 - Prob. 62RPCh. 3 - Prob. 63RP