# Find the derivative of the given function.

### Single Variable Calculus: Concepts...

4th Edition
James Stewart
Publisher: Cengage Learning
ISBN: 9781337687805

### Single Variable Calculus: Concepts...

4th Edition
James Stewart
Publisher: Cengage Learning
ISBN: 9781337687805

#### Solutions

Chapter 3.4, Problem 29E
To determine

## Find the derivative of the given function.

Expert Solution

The derivative of the given function is dydx=2cos(tan(2x))sec2(2x) .

### Explanation of Solution

Given:

The given function is y=sin(tan2x) .

Calculation:

y=sin(tan2x)

Apply chain rule.

Let f=sin(a),a=tan(2x)

dydx=dda(sina)ddx(tan2x)

Use derivative rule.

ddx(sinx)=cosxandddx(tanx)=sec2x .

dydx=cos(a)sec2(2x)2dydx=2cos(a)sec2(2x)

Substitute the value of a=tan(2x) .

dydx=2cos(tan(2x))sec2(2x)

Hence the derivativeof the given function is dydx=2cos(tan(2x))sec2(2x) .

### Have a homework question?

Subscribe to bartleby learn! Ask subject matter experts 30 homework questions each month. Plus, you’ll have access to millions of step-by-step textbook answers!