Physics for Scientists and Engineers: Foundations and Connections
Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
Question
Book Icon
Chapter 34, Problem 32PQ
To determine

The equations for the electric field and the magnetic field for an electromagnetic wave.

Expert Solution & Answer
Check Mark

Answer to Problem 32PQ

The equation for the electric field of the electromagnetic wave is given by:

    E=(0.050V/m)sin[(1.132×107m1)x(3.4×1015rad/s)t]k^.

The equation for the magnetic field of the electromagnetic wave is given by:

    B=(1.67×1010T)sin[(1.132×107m1)x(3.4×1015rad/s)t](j^).

Explanation of Solution

Write the expression for the electric field of an electromagnetic wave.

    E=Emaxsin(kxωt)k^                                                                         (I)

Here, Emax is the amplitude of the electric field, k is the propagation constant and ω is the angular frequency of the wave.

Write the expression for the magnetic field of an electromagnetic wave.

    B=Bmaxsin(kxωt)(j^)                                                                  (II)

Here, Bmax is the amplitude of the magnetic field, k is the propagation constant and ω is the angular frequency of the wave.

Write the expression for the propagation constant.

    k=2πλ                                                                                             (III)

Here, k is the propagation constant and λ is the wavelength.

Write the expression for the angular frequency of the wave.

    ω=2πcλ                                                                                          (IV)

Here, ω is the angular frequency, c is the speed of light and f is the frequency of the wave.

Write the expression for the amplitude of the magnetic field in terms of magnitude of electric field.

    Bmax=Emaxc                                                                                          (V)

Conclusion:

Substitute 555nm for λ in (III) to find k.

    k=2π(555nm×109m1nm)=1.132×107m1

Substitute, 3×108m/s for c and 555nm for λ in (IV)to find ω.

    ω=2π3×108m/s(555nm×109m11nm)=3.4×1015rad/s

Substitute 1.132×107m1 for k , 3.4×1015rad/s for ω and 0.050V/m for Emax in equation(I) to find E.

    E=(0.050V/m)sin((1.132×107m1)x(3.4×1015rad/s)t)k^.

Substitute 3×108m/s for c and 0.050V/m for Emax in (V) to find Bmax.

    Bmax=0.050V/m3×108m/s=1.67×1010T

Substitute 1.132×107m1 for k , 3.4×1015rad/s for ω and 1.67×1010T for Bmax in equation(II) to find B.

    B=(1.67×1010T)sin[(1.132×107m1)x(3.4×1015rad/s)t](j^).

Thus, the equation for the electric field of the electromagnetic wave is given by:

    E=(0.050V/m)sin[(1.132×107m1)x(3.4×1015rad/s)t]k^.

The equation for the magnetic field of the electromagnetic wave is given by:

    B=(1.67×1010T)sin[(1.132×107m1)x(3.4×1015rad/s)t](j^).

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 34 Solutions

Physics for Scientists and Engineers: Foundations and Connections

Ch. 34 - Prob. 4PQCh. 34 - A solenoid with n turns per unit length has radius...Ch. 34 - Prob. 6PQCh. 34 - Prob. 7PQCh. 34 - Prob. 8PQCh. 34 - Prob. 9PQCh. 34 - Prob. 10PQCh. 34 - Prob. 11PQCh. 34 - Prob. 12PQCh. 34 - Prob. 13PQCh. 34 - Prob. 14PQCh. 34 - Prob. 15PQCh. 34 - Prob. 16PQCh. 34 - Prob. 17PQCh. 34 - Prob. 18PQCh. 34 - Prob. 19PQCh. 34 - Prob. 20PQCh. 34 - Ultraviolet (UV) radiation is a part of the...Ch. 34 - Prob. 22PQCh. 34 - What is the frequency of the blue-violet light of...Ch. 34 - Prob. 24PQCh. 34 - Prob. 25PQCh. 34 - Prob. 26PQCh. 34 - WGVU-AM is a radio station that serves the Grand...Ch. 34 - Suppose the magnetic field of an electromagnetic...Ch. 34 - Prob. 29PQCh. 34 - Prob. 30PQCh. 34 - Prob. 31PQCh. 34 - Prob. 32PQCh. 34 - Prob. 33PQCh. 34 - Prob. 34PQCh. 34 - Prob. 35PQCh. 34 - Prob. 36PQCh. 34 - Prob. 37PQCh. 34 - Prob. 38PQCh. 34 - Prob. 39PQCh. 34 - Prob. 40PQCh. 34 - Prob. 41PQCh. 34 - Prob. 42PQCh. 34 - Prob. 43PQCh. 34 - Prob. 44PQCh. 34 - Prob. 45PQCh. 34 - Prob. 46PQCh. 34 - Prob. 47PQCh. 34 - Prob. 48PQCh. 34 - Prob. 49PQCh. 34 - Prob. 50PQCh. 34 - Prob. 51PQCh. 34 - Prob. 52PQCh. 34 - Optical tweezers use light from a laser to move...Ch. 34 - Prob. 54PQCh. 34 - Prob. 55PQCh. 34 - Prob. 57PQCh. 34 - Prob. 58PQCh. 34 - Prob. 59PQCh. 34 - Prob. 60PQCh. 34 - Some unpolarized light has an intensity of 1365...Ch. 34 - Prob. 62PQCh. 34 - Prob. 63PQCh. 34 - Prob. 64PQCh. 34 - Unpolarized light passes through three polarizing...Ch. 34 - The average EarthSun distance is 1.00 astronomical...Ch. 34 - Prob. 67PQCh. 34 - Prob. 68PQCh. 34 - Prob. 69PQCh. 34 - Prob. 70PQCh. 34 - Prob. 71PQCh. 34 - Prob. 72PQCh. 34 - Prob. 73PQCh. 34 - Prob. 74PQCh. 34 - CASE STUDY In Example 34.6 (page 1111), we...Ch. 34 - Prob. 76PQCh. 34 - Prob. 77PQCh. 34 - Prob. 78PQCh. 34 - Prob. 79PQCh. 34 - Prob. 80PQCh. 34 - Prob. 81PQCh. 34 - Prob. 82PQCh. 34 - Prob. 83PQCh. 34 - In Section 34-1, we summarized classical...
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON