# Explain the proof of the given relation using chain rule.

### Single Variable Calculus: Concepts...

4th Edition
James Stewart
Publisher: Cengage Learning
ISBN: 9781337687805

### Single Variable Calculus: Concepts...

4th Edition
James Stewart
Publisher: Cengage Learning
ISBN: 9781337687805

#### Solutions

Chapter 3.4, Problem 91E
To determine

## Explain the proof of the given relation using chain rule.

Expert Solution

### Explanation of Solution

Given:

The given relationis ddθ(sinθ)=π180cosθ , where θ is measured in degrees.

Calculation:

ddθ(sinθ)=π180cosθ

From L.H.S

ddθ(sinθ)

θ is measured in degrees.

ddθ(sinθ)=ddθ(sinπθ180)

Apply chain rule.

Let f=sin(a),a=πθ180

ddθ(sinθ)=dda(sina)ddθ(πθ180)

Use derivative rule.

ddx(sinx)=cosxandddx(xn)=nxn1 .

ddθ(sinθ)=cosaπ180(1)ddθ(sinθ)=π180cosa

Substitute the value of a=πθ180 .

ddθ(sinθ)=π180cos(πθ180)ddθ(sinθ)=π180cos(θ°)=R.H.S

Hence ddθ(sinθ)=π180cos(θ°) proved.

### Have a homework question?

Subscribe to bartleby learn! Ask subject matter experts 30 homework questions each month. Plus, you’ll have access to millions of step-by-step textbook answers!