Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
4th Edition
ISBN: 9780132273244
Author: Doug Giancoli
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Chapter 35, Problem 1Q

Radio waves and light are both electromagnetic waves. Why can a radio receive a signal behind a hill when we cannot see the transmitting antenna?

Expert Solution & Answer
Check Mark
To determine

Explain the reason for the radio is receiving the signal behind the hill but one cannot see the transmitting antenna.

Answer to Problem 1Q

The size (wavelength) of the radio waves and hill is comparable so, wave is diffracted from the hill and radio receives signals while the size (wavelength) of the visible waves and hill is not comparable so it could not be diffracted and we cannot see antenna.

Explanation of Solution

Electromagnetic waves are the waves consisting of oscillating electric and magnetic fields. There is a electromagnetic spectra consisting of electyromagnetic waves of different wavelengths. Radio and visible waves are one of them.

Radio waves have  wavelength ranges from 1mm-100km whereas the visible light waves have wavelength range from 380nm-740nm. Radio waves can diffract through normal sized objects such as hills because of its large wavelength but visible light cannot diffract through the hills due to shorter wavelength.

The slight bending of light from the edge of the object is known as ‘Diffraction’. The light would be diffracted only when the size of the object and the light are comparable to each other.

Conclusion:

Thus, the size (wavelength) of the radio waves and hill is comparable so, wave is diffracted from the hill and radio receives signals while the size (wavelength) of the visible waves and hill is not comparable so it could not be diffracted and we cannot see antenna.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 35 Solutions

Physics for Science and Engineering With Modern Physics, VI - Student Study Guide

Ch. 35 - What happens to the diffraction pattern of a...Ch. 35 - In the single-slit diffraction pattern, why does...Ch. 35 - Discuss the similarities, and differences, of...Ch. 35 - Figure 3510 shows a two-slit interference pattern...Ch. 35 - When both diffraction and interference are taken...Ch. 35 - Does diffraction limit the resolution of images...Ch. 35 - Give at least two advantages for the use of large...Ch. 35 - Atoms have diameters of about 108 cm. Can visible...Ch. 35 - Which color of visible light would give the best...Ch. 35 - Could a diffraction grating just as well be called...Ch. 35 - Suppose light consisting of wavelengths between...Ch. 35 - What is the difference in the interference...Ch. 35 - White light strikes (a) a diffraction grating and...Ch. 35 - Explain why there are tiny peaks between the main...Ch. 35 - What does polarization tell us about the nature of...Ch. 35 - How can you tell if a pair of sunglasses is...Ch. 35 - Prob. 23QCh. 35 - (I) If 680-nm light falls on a slit 0.0365 mm...Ch. 35 - (I) Monochromatic light falls on a slit that is...Ch. 35 - (II) Light of wavelength 580 nm falls on a slit...Ch. 35 - (II) Consider microwaves which are incident...Ch. 35 - (II) If parallel light falls on a single slit of...Ch. 35 - (II) Monochromatic light of wavelength 633 nm...Ch. 35 - (II) If a slit diffracts 580-nm light so that the...Ch. 35 - (II) (a) For a given wavelength , what is the...Ch. 35 - (II) When blue light of wavelength 440 nm falls on...Ch. 35 - (II) A single slit 1.0 mm wide is illuminated by...Ch. 35 - (II) Coherent light from a laser diode is emitted...Ch. 35 - (II) If you double the width of a single slit, the...Ch. 35 - (II) Light of wavelength 750 nm passes through a...Ch. 35 - (II) If a double-slit pattern contains exactly...Ch. 35 - (II) Design a double-slit apparatus so that the...Ch. 35 - (II) 605-nm light passes through a pair of slits...Ch. 35 - (II) Two 0.010-mm-wide slits are 0.030mm apart...Ch. 35 - (II) Suppose d = D in a double-slit apparatus, so...Ch. 35 - (II) In a double-slit experiment, let d = 5.00D =...Ch. 35 - (II) How many fringes are contained in the central...Ch. 35 - (I) What is the angular resolution limit (degrees)...Ch. 35 - (II) Two stars 16 light-years away are barely...Ch. 35 - (II) The nearest neighboring star to the Sun is...Ch. 35 - (II) If you shine a flashlight beam toward the...Ch. 35 - (II) Suppose that you wish to construct a...Ch. 35 - (II) The normal lens on a 35-mm camera has a focal...Ch. 35 - (I) At what angle will 480-nm light produce a...Ch. 35 - (I) A source produces first-order lines when...Ch. 35 - (I) A 3500-line/cm grating produces a third-order...Ch. 35 - (I) A grating has 6800 lines/cm. How many spectral...Ch. 35 - (II) How many lines per centimeter does a grating...Ch. 35 - (II) Red laser light from a He-Ne laser ( = 632.8...Ch. 35 - (II) White light containing wavelengths from 410...Ch. 35 - (II) A diffraction grating has 6.0 l05 lines/m....Ch. 35 - (II) A tungstenhalogen bulb emits a continuous...Ch. 35 - (II) Show that the second- and third-order spectra...Ch. 35 - (II) Two first-order spectrum lines are measured...Ch. 35 - (II) Suppose the angles measured in Problem 40...Ch. 35 - (II) The first-order line of 589-nm light falling...Ch. 35 - Prob. 43PCh. 35 - (II) Missing orders occur for a diffraction...Ch. 35 - (II) A 6500-line/cm diffraction grating is 3.18 cm...Ch. 35 - (II) A diffraction grating has 16,000 rulings in...Ch. 35 - (II) Let 580-nm light be incident normally on a...Ch. 35 - Prob. 49PCh. 35 - (II) First-order Bragg diffraction is observed at...Ch. 35 - Prob. 51PCh. 35 - (I) Two polarizers are oriented at 65 to one...Ch. 35 - (I) Two Polaroids are aligned so that the light...Ch. 35 - (I) What is Brewsters angle for an airglass (n =...Ch. 35 - (I) What is Brewsters angle for a diamond...Ch. 35 - (II) The critical angle for total internal...Ch. 35 - (II) At what angle should the axes of two...Ch. 35 - (II) Two polarizers are oriented at 36.0 to one...Ch. 35 - (II) What would Brewsters angle be for reflections...Ch. 35 - (II) Unpolarized light passes through six...Ch. 35 - (II) Two polarizers A and B are aligned so that...Ch. 35 - (III) The percent polarization P of a partially...Ch. 35 - When violet light of wavelength 415 nm falls on a...Ch. 35 - A series of polarizers are each placed at a 10...Ch. 35 - The wings of a certain beetle have a series of...Ch. 35 - A teacher stands well back from an outside doorway...Ch. 35 - Light is incident on a diffraction grating with...Ch. 35 - How many lines per centimeter must a grating have...Ch. 35 - When yellow sodium light, = 589 nm, falls on a...Ch. 35 - Prob. 70GPCh. 35 - (a) How far away can a human eye distinguish two...Ch. 35 - A laser beam passes through a slit of width 1.0 cm...Ch. 35 - Prob. 73GPCh. 35 - At what angle above the horizon is the Sun when...Ch. 35 - Unpolarized light tails on two polarizer sheets...Ch. 35 - Al what angle should the axes of two Polaroids be...Ch. 35 - Four polarizers are placed in succession with...Ch. 35 - Spy planes fly at extremely high altitudes (25 km)...Ch. 35 - Two polarizers are oriented at 48 to each other...Ch. 35 - Prob. 81GPCh. 35 - The Hubble Space Telescope with an objective...Ch. 35 - The Earth and Moon are separated by about 400 106...Ch. 35 - A slit of width D = 22 m is cut through a thin...
Knowledge Booster
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
    Recommended textbooks for you
  • An Introduction to Physical Science
    Physics
    ISBN:9781305079137
    Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
    Publisher:Cengage Learning
    Principles of Physics: A Calculus-Based Text
    Physics
    ISBN:9781133104261
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    University Physics Volume 3
    Physics
    ISBN:9781938168185
    Author:William Moebs, Jeff Sanny
    Publisher:OpenStax
  • Physics for Scientists and Engineers, Technology ...
    Physics
    ISBN:9781305116399
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    College Physics
    Physics
    ISBN:9781305952300
    Author:Raymond A. Serway, Chris Vuille
    Publisher:Cengage Learning
    College Physics
    Physics
    ISBN:9781285737027
    Author:Raymond A. Serway, Chris Vuille
    Publisher:Cengage Learning
  • An Introduction to Physical Science
    Physics
    ISBN:9781305079137
    Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
    Publisher:Cengage Learning
    Principles of Physics: A Calculus-Based Text
    Physics
    ISBN:9781133104261
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    University Physics Volume 3
    Physics
    ISBN:9781938168185
    Author:William Moebs, Jeff Sanny
    Publisher:OpenStax
    Physics for Scientists and Engineers, Technology ...
    Physics
    ISBN:9781305116399
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    College Physics
    Physics
    ISBN:9781305952300
    Author:Raymond A. Serway, Chris Vuille
    Publisher:Cengage Learning
    College Physics
    Physics
    ISBN:9781285737027
    Author:Raymond A. Serway, Chris Vuille
    Publisher:Cengage Learning
    Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY