Fig. 35-43, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) Part of the light ends up in material 3 as ray r 3 (the light does not reflect inside material 2) and r 4 (the light reflects twice inside material 2). The waves of r 3 and r 4 interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35-3 refers to the indexes of refraction n 1 , n 2 , and n 3 , the type of interference, the thin-layer thickness L in nanometers, and the wavelength ๐ in nanometers of the light as measured in air. Where ๐ is missing, give the wavelength that is in the visible range. Where L is missing, give the second least thickness or the third least thickness as indicated. Figure 35-45 n 1 n 2 n 3 Type L ๐ 61 1.32 1.75 1.39 Min 325 62 1.68 1.59 1.50 Max 2nd 342 63 1.40 1.46 1.75 Max 2nd 482 64 1.40 1.46 1.75 Max 210 65 1.60 1.40 1.80 Min 2nd 632 Table 35-3: Transmission Through Thin Layers.
Fig. 35-43, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) Part of the light ends up in material 3 as ray r 3 (the light does not reflect inside material 2) and r 4 (the light reflects twice inside material 2). The waves of r 3 and r 4 interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35-3 refers to the indexes of refraction n 1 , n 2 , and n 3 , the type of interference, the thin-layer thickness L in nanometers, and the wavelength ๐ in nanometers of the light as measured in air. Where ๐ is missing, give the wavelength that is in the visible range. Where L is missing, give the second least thickness or the third least thickness as indicated. Figure 35-45 n 1 n 2 n 3 Type L ๐ 61 1.32 1.75 1.39 Min 325 62 1.68 1.59 1.50 Max 2nd 342 63 1.40 1.46 1.75 Max 2nd 482 64 1.40 1.46 1.75 Max 210 65 1.60 1.40 1.80 Min 2nd 632 Table 35-3: Transmission Through Thin Layers.
Fig. 35-43, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) Part of the light ends up in material 3 as ray
r
3
(the light does not reflect inside material 2) and
r
4
(the light reflects twice inside material 2). The waves of
r
3
and
r
4
interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35-3 refers to the indexes of refraction
n
1
,
n
2
, and
n
3
, the type of interference, the thin-layer thickness L in nanometers, and the wavelength ๐ in nanometers of the light as measured in air. Where ๐ is missing, give the wavelength that is in the visible range. Where L is missing, give the second least thickness or the third least thickness as indicated.
A car starting from the rest moves at an acceleration of 2m/sยฒ for 5s. Then it moves with uniform velocity for another 5s. After that it starts to decelerate and comes to the rest in 10s..
(i) Draw the velocity vs time graph for the car from the above data.
(ii) Draw the displacement vs time graph for the same.
Please help me answer the following question!
A solid cylinder of length L and radius R is coaxial with the z-axis with one circular end at z= 0 and the other at z = L. The cylinder material contains microscopic magnetic dipoles, which have average magnetic dipole moment <m> and number density n(r) given byย
<m> = m0 ez, n(r) = n0(1-(z/L))aย
in cyclindrical coordinates. If m0, n0, and a are real constants, what is the bound surface current ib on each surface and the total current I due to bound surface currents?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.