
Physical Science
11th Edition
ISBN: 9780077862626
Author: Bill Tillery, Stephanie J. Slater, Timothy F. Slater
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 22AC
Latent heat is “hidden” because it
a. goes into or comes out of internal potential energy.
b. is a fluid (caloric) that cannot be sensed.
c. does not actually exist.
d. is a form of internal kinetic energy.
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
Question 17
A ping pong ball, of mass 2.7 g and diameter 4.0 cm, is dropped from a 15-m high
building.
a.
Estimate the ball's terminal velocity.
b. At what speed would the ball hit the ground in the absence of air drag?
Papa
Yesterday
Pls help me.
Pls help me.
Chapter 4 Solutions
Physical Science
Ch. 4 - 1. The Fahrenheit thermometer scale is
a. more...Ch. 4 - Prob. 2ACCh. 4 - Prob. 3ACCh. 4 - 4. External energy refers to the
a. energy that...Ch. 4 - Prob. 5ACCh. 4 - The specific heat of copper is 0.093 cal/gC, and...Ch. 4 - 7. The specific heat of water is 1.00 cal/gC°, and...Ch. 4 - Prob. 8ACCh. 4 - Prob. 9ACCh. 4 - Prob. 10AC
Ch. 4 - Prob. 11ACCh. 4 - Prob. 12ACCh. 4 - 13. The energy supplied to a system in the form of...Ch. 4 - Prob. 14ACCh. 4 - Prob. 15ACCh. 4 - Prob. 16ACCh. 4 - Prob. 17ACCh. 4 - Prob. 18ACCh. 4 - Prob. 19ACCh. 4 - Prob. 20ACCh. 4 - 21. The transfer of heat that takes place because...Ch. 4 - 22. Latent heat is “hidden” because it
a. goes...Ch. 4 - Prob. 23ACCh. 4 - 24. A heat engine is designed to
a. move heat from...Ch. 4 - 25. The work that a heat engine is able to...Ch. 4 - Prob. 26ACCh. 4 - Prob. 27ACCh. 4 - Prob. 28ACCh. 4 - 29. The cheese on a hot pizza takes a long time to...Ch. 4 - 30. The specific heat of copper is roughly three...Ch. 4 - Prob. 31ACCh. 4 - 32. Conduction best takes place in a
a. solid.
b....Ch. 4 - 33. Convection best takes place in a (an)
a....Ch. 4 - Prob. 34ACCh. 4 - Prob. 35ACCh. 4 - Prob. 36ACCh. 4 - Prob. 37ACCh. 4 - 38. At temperatures above freezing, the...Ch. 4 - Prob. 39ACCh. 4 - Prob. 40ACCh. 4 - Prob. 41ACCh. 4 - 42. The second law of thermodynamics tells us that...Ch. 4 - 43. The heat death of the universe in the future...Ch. 4 - 1. What is temperature? What is heat?
Ch. 4 - 2. Explain why most materials become less dense as...Ch. 4 - 3. Would the tight packing of more insulation,...Ch. 4 - 4. A true vacuum bottle has a double-walled,...Ch. 4 - 5. Why is cooler air found in low valleys on calm...Ch. 4 - 6. Why is air a good insulator?
Ch. 4 - 7. Explain the meaning of the mechanical...Ch. 4 - 8. What do people really mean when they say that a...Ch. 4 - 9. A piece of metal feels cooler than a piece of...Ch. 4 - 10. Explain how the latent heat of fusion and the...Ch. 4 - 11. What is condensation? Explain, on a molecular...Ch. 4 - 12. Which provides more cooling for a Styrofoam...Ch. 4 - 13. Explain why a glass filled with a cold...Ch. 4 - 14. Explain why a burn from 100°C steam is more...Ch. 4 - Briefly describe, using sketches as needed, how a...Ch. 4 - 16. Which has the greatest entropy: ice, liquid...Ch. 4 - 17. Suppose you use a heat engine to do the work...Ch. 4 - 1. Considering the criteria for determining if...Ch. 4 - Prob. 2FFACh. 4 - 3. Gas and plasma are phases of matter, yet gas...Ch. 4 - Prob. 4FFACh. 4 - 5. This chapter contains information about three...Ch. 4 - Prob. 6FFACh. 4 - 7. Explore the assumptions on which the “heat...Ch. 4 - Prob. 1IICh. 4 - Prob. 1PEBCh. 4 - Prob. 2PEBCh. 4 - Prob. 3PEBCh. 4 - 4. A 1.0 kg metal head of a geology hammer strikes...Ch. 4 - 5. A 60.0 kg person will need to climb a 10.0 m...Ch. 4 - 6. A 50.0 g silver spoon at 20.0°C is placed in a...Ch. 4 - 7. If the silver spoon placed in the coffee in...Ch. 4 - 8. How many minutes would be required for a 300.0...Ch. 4 - Prob. 9PEBCh. 4 - 10. A 1.00 kg block of ice at 0°C is added to a...Ch. 4 - Prob. 11PEBCh. 4 - Prob. 12PEBCh. 4 - Prob. 13PEBCh. 4 - 14. A heat engine converts 100.0 cal from a supply...Ch. 4 - Prob. 15PEB
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Pls help me.arrow_forwardPls help me.arrow_forwardQuestion 3 After walking for 6.0 min on the way to school, a child discovers that her loonie is missing and there is a hole in her pocket. She immediately turns back and slowly walks 40 m, on the sidewalk, where she finds the coin. After stopping for 45 s the child heads back to school and arrives 3.0 min later. If the school is located 500 m east of home (see Figure A1.03), and the child walks at a speed of 0.25 m/s while searching for the coin, determine a. her average velocity during the whole trip? b. her average speed during the whole trip? C. her normal walking speed? 40 m School Home East 0 100 200 300 400 500arrow_forward
- Pls help me.arrow_forwardQuestion 11 A worker stands on the roof of a 45.0 m high building that is under construction. He throws a bag of debris giving it an initial velocity of 12.0 m/s at an angle of 33.0° from downward direction. a. How long is the bag in flight? b. How far from the building does the bag land? C. What is the bag's final speed just before it hits the ground?arrow_forwardPls help me.arrow_forward
- Question 8 Three vectors A, B, and C each has a magnitude of 40.0 units. Their directions relative to the positive x axis are 30.0°, 90.0°, and 120°, respectively. Using analytical methods, calculate the magnitude and direction of the following combinations, a. A + B C. - b. 2 (AC) - 3B. Papaarrow_forwardPls help me.arrow_forwardPls help me.arrow_forward
- Pls help me.arrow_forwardQuestion 2 Perform the following unit conversions and express your answer in scientific notation. 0.00480 mm a. → μm b. 9.0 ft² → m² 2 c. 1.00 ft ³ 1.00 ft 3 → litre d. 60.0 km/h mi/h e. 5.00 g/cm³ → kg/m³arrow_forwardQuestion 16 A 4.00 kg block slides on the surface of an inclined table, which makes an angle of 15.0° with the horizontal. The block is connected through cords over two pulleys to a 7.26 kg bowling ball on the upper side of the table, and a 3.00 kg ball on the lower side, as shown in Figure A1.16. The pulleys are massless and frictionless, while the coefficient of kinetic friction between the block and the table's surface is 0.470. a. Draw a free-body diagram for each moving object. b. Determine the direction of motion and acceleration of the system. C. Calculate the tension in each cord. Hum Saath Saath Hain Yesterdayarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY