# Tofind: theroot of the Equation of the function using Newtonian method and correctup-to 6 decimal places. ### Single Variable Calculus: Concepts...

4th Edition
James Stewart
Publisher: Cengage Learning
ISBN: 9781337687805 ### Single Variable Calculus: Concepts...

4th Edition
James Stewart
Publisher: Cengage Learning
ISBN: 9781337687805

#### Solutions

Chapter 4, Problem 50RE
To determine

## Tofind:theroot of the Equation of the function using Newtonian method and correctup-to 6 decimal places.

Expert Solution

Theabsolute maximum value of the function is 0.268881 , 2.77005756 .

### Explanation of Solution

Given:

sinx=x23x+1 .

Concept used:

If d2ydx2>0. the concave will be open upward and local minima can be found.

If d2ydx2<0. the concave will open downward and local maxima can be found.

Newton’s method formula:

xn+1=xnf(xn)f(xn) .

Calculation:

The function is similar to a downward opening parabola so the local max will be the absolute maximum. Here need to find the zero of f ..

lets consider the function interms of x .

f(x)=sinxx2+3x1 .

The graph of sinx=x23x+1 From the graph it can make easily approximate the initial value of x.

x0.3,2.8 .

Starting with initial approximation xn .

xn+1=xnf(xn)f(xn) .

x1=0.3 .

x2=0.3f(0.3)f(0.3)0.26855153

x3=0.26855153f(0.26855153)f(0.26855153)0.26888131 .

x4=0.26888131f(0.26888131)f(0.26888131)0.268881.

The second root between 2 and 3.

x1=2.8

x2=2.8f(2.8)f(2.8)2.77035425 .

x3=2.77035425f(2.77035425)f(2.77035425)2.77005759 .

x4=2.77005759f(2.77005759)f(2.77005759)2.77005756 .

Hence the absolute maximum value of the function is 0.268881 , 2.77005756 .

### Have a homework question?

Subscribe to bartleby learn! Ask subject matter experts 30 homework questions each month. Plus, you’ll have access to millions of step-by-step textbook answers!