Chemistry: An Atoms First Approach
Chemistry: An Atoms First Approach
2nd Edition
ISBN: 9781305079243
Author: Steven S. Zumdahl, Susan A. Zumdahl
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 4, Problem 83AE

(a)

Interpretation Introduction

Interpretation: The Lewis structures and the molecular structures of the given compounds; and the bonding of these compounds are to be stated.

Concept introduction: The following steps are to be followed to determine the molecular structure of a given compound,

  • The central atom is identified.
  • Its valence electrons are determined.
  • 1e is added to the total number of valence electrons for each monovalent atom present.
  • The total number obtained is divided by 2 , to find the number of electron pairs.
  • This further gives us the hybridization of the given compound.

To determine: The Lewis structure and the molecular structure of XeO3

(a)

Expert Solution
Check Mark

Explanation of Solution

The central atom in XeO3 is xenon (Xe). The electronic configuration of xenon is,

1s22s22p63s23p63d104s24p64d105s25p6

The valence electrons in xenon are eight.

The electronic configuration of oxygen is,

1s22s22p4

The valence elctrons in oxygen is six.

The total number of valence electrons are,

Xe+3O=(8+6×3)e=(26)e

The formula of number of electron pairs is,

X=V+M±C2

Where,

  • X is number of electron pairs.
  • V is valence electrons of central atom.
  • M is number of monovalent atoms.
  • C is charge on compound.

The number of electron pairs is,

X=V+M±C2X=82=4

This means that the central atom shows sp3 hybridization and should have a trigonal pyramidal geometry.

The Lewis structure of XeO3 is,

Chemistry: An Atoms First Approach, Chapter 4, Problem 83AE , additional homework tip  1

Conclusion

The geometry of a given compound can be predicted using the hybridization of the central atom present. The molecular shape can be predicted on the basis of the Lewis structure of the given compound. The lone pairs are depicted in the Lewis structure diagrams.

(b)

Interpretation Introduction

Interpretation: The Lewis structures and the molecular structures of the given compounds; and the bonding of these compounds are to be stated.

Concept introduction: The following steps are to be followed to determine the molecular structure of a given compound,

  • The central atom is identified.
  • Its valence electrons are determined.
  • 1e is added to the total number of valence electrons for each monovalent atom present.
  • The total number obtained is divided by 2, to find the number of electron pairs.
  • This further gives us the hybridization of the given compound.

To determine: The Lewis structure and the molecular structure of XeO4

(b)

Expert Solution
Check Mark

Answer to Problem 83AE

The molecular structure of XeO4 is tetrahedral.

Explanation of Solution

Explanation

The central atom in XeO4 is xenon (Xe). The electronic configuration of xenon is,

1s22s22p63s23p63d104s24p64d105s25p6

The valence electrons in xenon are eight.

The electronic configuration of oxygen is,

1s22s22p4

The valence elctrons in oxygen is six.

The total number of valence electrons are,

Xe+4O=(8+6×4)e=(32)e

The formula of number of electron pairs is,

X=V+M±C2

The number of electron pairs is,

X=V+M±C2X=82=4

This means that the central atom shows sp3 hybridization and should have a tetrahedral geometry.

The Lewis structure of XeO4 is,

Chemistry: An Atoms First Approach, Chapter 4, Problem 83AE , additional homework tip  2

Conclusion

The geometry of a given compound can be predicted using the hybridization of the central atom present. The molecular shape can be predicted on the basis of the Lewis structure of the given compound. The lone pairs are depicted in the Lewis structure diagrams.

(c)

Interpretation Introduction

Interpretation: The Lewis structures and the molecular structures of the given compounds; and the bonding of these compounds are to be stated.

Concept introduction: The following steps are to be followed to determine the molecular structure of a given compound,

  • The central atom is identified.
  • Its valence electrons are determined.
  • 1e is added to the total number of valence electrons for each monovalent atom present.
  • The total number obtained is divided by 2, to find the number of electron pairs.
  • This further gives us the hybridization of the given compound.

To determine: The Lewis structure and the molecular structure of XeOF4

(c)

Expert Solution
Check Mark

Answer to Problem 83AE

Answer

The molecular structure of XeOF4 is square pyramidal.

Explanation of Solution

The central atom in XeOF4 is xenon (Xe). The electronic configuration of xenon is,

1s22s22p63s23p63d104s24p64d105s25p6

The valence electrons in xenon are eight.

The electronic configuration of oxygen is,

1s22s22p4

The valence elctrons in oxygen is six.

The electronic configuration of fluorine is,

1s22s22p5

The valence elctrons in fluorine is seven.

The total number of valence electrons are,

Xe+O+4F=(8+6+7×4)e=(42)e

The formula of number of electron pairs is,

X=V+M±C2

The number of electron pairs is,

X=V+M±C2X=8+42=6

This means that the central atom shows sp3d2 hybridization and should have a square pyramidal geometry.

The Lewis structure of XeOF4 is,

Chemistry: An Atoms First Approach, Chapter 4, Problem 83AE , additional homework tip  3

Conclusion

The geometry of a given compound can be predicted using the hybridization of the central atom present. The molecular shape can be predicted on the basis of the Lewis structure of the given compound. The lone pairs are depicted in the Lewis structure diagrams.

(d)

Interpretation Introduction

Interpretation: The Lewis structures and the molecular structures of the given compounds; and the bonding of these compounds are to be stated.

Concept introduction: The following steps are to be followed to determine the molecular structure of a given compound,

  • The central atom is identified.
  • Its valence electrons are determined.
  • 1e is added to the total number of valence electrons for each monovalent atom present.
  • The total number obtained is divided by 2, to find the number of electron pairs.
  • This further gives us the hybridization of the given compound.

To determine: The Lewis structure and the molecular structure of XeOF2

(d)

Expert Solution
Check Mark

Answer to Problem 83AE

Answer

The molecular structure of XeOF2 is T-shape.

Explanation of Solution

The central atom in XeOF2 is xenon (Xe). The electronic configuration of xenon is,

1s22s22p63s23p63d104s24p64d105s25p6

The valence electrons in xenon are eight.

The electronic configuration of oxygen is,

1s22s22p4

The valence elctrons in oxygen is six.

The electronic configuration of fluorine is,

1s22s22p5

The valence elctrons in fluorine is seven.

The total number of valence electrons are,

Xe+O+2F=(8+6+7×2)e=(28)e

The formula of number of electron pairs is,

X=V+M±C2

The number of electron pairs is,

X=V+M±C2X=8+22=5

This means that the central atom shows sp3d2 hybridization and should have T-shape geometry.

The Lewis structure of XeOF2 is,

Chemistry: An Atoms First Approach, Chapter 4, Problem 83AE , additional homework tip  4

Conclusion

The geometry of a given compound can be predicted using the hybridization of the central atom present. The molecular shape can be predicted on the basis of the Lewis structure of the given compound. The lone pairs are depicted in the Lewis structure diagrams.

(e)

Interpretation Introduction

Interpretation: The Lewis structures and the molecular structures of the given compounds; and the bonding of these compounds are to be stated.

Concept introduction: The following steps are to be followed to determine the molecular structure of a given compound,

  • The central atom is identified.
  • Its valence electrons are determined.
  • 1e is added to the total number of valence electrons for each monovalent atom present.
  • The total number obtained is divided by 2, to find the number of electron pairs.
  • This further gives us the hybridization of the given compound.

To determine: The Lewis structure and the molecular structure of XeO3F2

(e)

Expert Solution
Check Mark

Answer to Problem 83AE

Answer

The molecular structure of XeO3F2 is trigonal bipyramidal.

Explanation of Solution

The central atom in XeO3F2 is xenon (Xe). The electronic configuration of xenon is,

1s22s22p63s23p63d104s24p64d105s25p6

The valence electrons in xenon are eight.

The electronic configuration of oxygen is,

1s22s22p4

The valence elctrons in oxygen is six.

The electronic configuration of fluorine is,

1s22s22p5

The valence elctrons in fluorine is seven.

The total number of valence electrons are,

Xe+3O+2F=(8+(6×3)+7×2)e=(40)e

The formula of number of electron pairs is,

X=V+M±C2

The number of electron pairs is,

X=V+M±C2X=8+22=5

This means that the central atom shows sp3d hybridization and should have trigonal bipyramidal geometry.

The Lewis structure of XeO3F2 is,

Chemistry: An Atoms First Approach, Chapter 4, Problem 83AE , additional homework tip  5

Conclusion

The geometry of a given compound can be predicted using the hybridization of the central atom present. The molecular shape can be predicted on the basis of the Lewis structure of the given compound. The lone pairs are depicted in the Lewis structure diagrams.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
What is the hybrid orbital? What is the molecular arrangement? What is the shape?
Describe how molecular orbital theory accommodates all the conventional  types of bonding.
Consider the reaction BF3 + NH3 -> F3B-NH3 (a) Describe the changes in hybridization of the B and N atoms as a result of this reaction. (b) Describe the shapes of all the reactant molecules with their bond angles. (c) Draw the overall shape of the product molecule and identify the bond angles around B and N atoms. (d) What is the name of the bond between B and N. (e)Describe the bonding orbitals that make the B and F, B and N & N and H bonds in the product molecule.

Chapter 4 Solutions

Chemistry: An Atoms First Approach

Ch. 4 - Which of the following would you expect to be more...Ch. 4 - Arrange the following molecules from most to least...Ch. 4 - Which is the more correct statement: The methane...Ch. 4 - Prob. 7ALQCh. 4 - Prob. 8ALQCh. 4 - Which of the following statements is/are true?...Ch. 4 - Give one example of a compound having a linear...Ch. 4 - In the hybrid orbital model, compare and contrast ...Ch. 4 - Prob. 13QCh. 4 - Prob. 14QCh. 4 - Prob. 15QCh. 4 - Prob. 16QCh. 4 - Compare and contrast bonding molecular orbitals...Ch. 4 - Prob. 18QCh. 4 - Why does the molecular orbital model do a better...Ch. 4 - The three NO bonds in NO3 are all equivalent in...Ch. 4 - Predict the molecular structure (including bond...Ch. 4 - Predict the molecular structure (including bond...Ch. 4 - Predict the molecular structure and bond angles...Ch. 4 - Prob. 24ECh. 4 - Prob. 25ECh. 4 - Two variations of the octahedral geometry (see...Ch. 4 - Predict the molecular structure (including bond...Ch. 4 - Predict the molecular structure (including bond...Ch. 4 - State whether or not each of the following has a...Ch. 4 - The following electrostatic potential diagrams...Ch. 4 - Which of the molecules in Exercises 21 and 22 have...Ch. 4 - Which of the molecules in Exercises 27 and 28 have...Ch. 4 - Write Lewis structures and predict the molecular...Ch. 4 - Write Lewis structures and predict whether each of...Ch. 4 - Consider the following Lewis structure where E is...Ch. 4 - Consider the following Lewis structure where E is...Ch. 4 - The molecules BF3, CF4, CO2, PF5, and SF6 are all...Ch. 4 - Two different compounds have the formula XeF2Cl2....Ch. 4 - Use the localized electron model to describe the...Ch. 4 - Use the localized electron model to describe the...Ch. 4 - Use the localized electron model to describe the...Ch. 4 - Use the localized electron model to describe the...Ch. 4 - The space-filling models of ethane and ethanol are...Ch. 4 - The space-filling models of hydrogen cyanide and...Ch. 4 - Prob. 45ECh. 4 - Prob. 46ECh. 4 - Prob. 47ECh. 4 - Give the expected hybridization of the central...Ch. 4 - For each of the following molecules, write the...Ch. 4 - For each of the following molecules or ions that...Ch. 4 - Prob. 51ECh. 4 - The allene molecule has the following Lewis...Ch. 4 - Indigo is the dye used in coloring blue jeans. The...Ch. 4 - Prob. 54ECh. 4 - Prob. 55ECh. 4 - Many important compounds in the chemical industry...Ch. 4 - Two molecules used in the polymer industry are...Ch. 4 - Hot and spicy foods contain molecules that...Ch. 4 - One of the first drugs to be approved for use in...Ch. 4 - The antibiotic thiarubin-A was discovered by...Ch. 4 - Prob. 61ECh. 4 - Sketch the molecular orbital and label its type (...Ch. 4 - Prob. 63ECh. 4 - Which of the following are predicted by the...Ch. 4 - Prob. 65ECh. 4 - Prob. 66ECh. 4 - Prob. 67ECh. 4 - Using the molecular orbital model to describe the...Ch. 4 - Prob. 69ECh. 4 - A Lewis structure obeying the octet rule can be...Ch. 4 - Using the molecular orbital model, write electron...Ch. 4 - Using the molecular orbital model, write electron...Ch. 4 - In which of the following diatomic molecules would...Ch. 4 - In terms of the molecular orbital model, which...Ch. 4 - Prob. 75ECh. 4 - Show how a hydrogen 1s atomic orbital and a...Ch. 4 - Use Figs. 4-54 and 4-55 to answer the following...Ch. 4 - The diatomic molecule OH exists in the gas phase....Ch. 4 - Prob. 79ECh. 4 - Describe the bonding in NO+, NO, and NO, using...Ch. 4 - Describe the bonding in the O3 molecule and the...Ch. 4 - Prob. 82ECh. 4 - Prob. 83AECh. 4 - Vitamin B6 is an organic compound whose deficiency...Ch. 4 - Two structures can be drawn for cyanuric acid: a....Ch. 4 - Prob. 86AECh. 4 - What do each of the following sets of...Ch. 4 - Aspartame is an artificial sweetener marketed...Ch. 4 - Prob. 89AECh. 4 - The three most stable oxides of carbon are carbon...Ch. 4 - Prob. 91AECh. 4 - Which of the following molecules have net dipole...Ch. 4 - The strucrure of TeF5 is Draw a complete Lewis...Ch. 4 - Complete the following resonance structures for...Ch. 4 - Prob. 95AECh. 4 - Describe the bonding in the first excited state of...Ch. 4 - Using an MO energy-level diagram, would you expect...Ch. 4 - Show how a dxz. atomic orbital and a pz, atomic...Ch. 4 - What type of molecular orbital would result from...Ch. 4 - Consider three molecules: A, B, and C. Molecule A...Ch. 4 - Prob. 101CWPCh. 4 - Predict the molecular structure, bond angles, and...Ch. 4 - Draw the Lewis structures for SO2, PCl3, NNO, COS,...Ch. 4 - Draw the Lewis structures for TeCl4, ICl5, PCl5,...Ch. 4 - A variety of chlorine oxide fluorides and related...Ch. 4 - Pelargondin is the molecule responsible for the...Ch. 4 - Complete a Lewis structure for the compound shown...Ch. 4 - Prob. 108CWPCh. 4 - Consider the molecular orbital electron...Ch. 4 - Place the species B2+ , B2, and B2 in order of...Ch. 4 - The compound NF3 is quite stable, but NCl3 is very...Ch. 4 - Predict the molecular structure for each of the...Ch. 4 - Prob. 113CPCh. 4 - Cholesterol (C27liu;O) has the following...Ch. 4 - Cyanamide (H2NCN), an important industrial...Ch. 4 - As compared with CO and O2, CS and S2 are very...Ch. 4 - Prob. 117CPCh. 4 - Use the MO model to explain the bonding in BeH2....Ch. 4 - Prob. 119CPCh. 4 - Arrange the following from lowest to highest...Ch. 4 - Prob. 121CPCh. 4 - Prob. 122CPCh. 4 - Carbon monoxide (CO) forms bonds to a variety of...Ch. 4 - The space-filling model for benzoic acid, a food...Ch. 4 - As the bead engineer of your starship in charge of...Ch. 4 - A flask containing gaseous N2 is irradiated with...Ch. 4 - Determine the molecular structure and...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
  • Text book image
    Chemistry: Matter and Change
    Chemistry
    ISBN:9780078746376
    Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
    Publisher:Glencoe/McGraw-Hill School Pub Co
    Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
  • Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry: Principles and Practice
    Chemistry
    ISBN:9780534420123
    Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
    Publisher:Cengage Learning
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Stoichiometry - Chemistry for Massive Creatures: Crash Course Chemistry #6; Author: Crash Course;https://www.youtube.com/watch?v=UL1jmJaUkaQ;License: Standard YouTube License, CC-BY
Bonding (Ionic, Covalent & Metallic) - GCSE Chemistry; Author: Science Shorts;https://www.youtube.com/watch?v=p9MA6Od-zBA;License: Standard YouTube License, CC-BY
General Chemistry 1A. Lecture 12. Two Theories of Bonding.; Author: UCI Open;https://www.youtube.com/watch?v=dLTlL9Z1bh0;License: CC-BY