BuyFindarrow_forward

Finite Mathematics and Applied Cal...

7th Edition
Stefan Waner + 1 other
ISBN: 9781337274203

Solutions

Chapter
Section
BuyFindarrow_forward

Finite Mathematics and Applied Cal...

7th Edition
Stefan Waner + 1 other
ISBN: 9781337274203
Textbook Problem

In Exercises 1-6, find three different particular solutions of the given equation and also its general solution in two forms (if possible): parameterized by x and parameterized by y.

[HINT: See Example 1 and Quick Examples 2-4]

3 x + 4 y = 2

To determine

To calculate: The general solution in two forms: parameterized by x and parameterized by y

and also three different particular solutions of the equation 3x+4y=2.

Explanation

Given Information:

The provided equation is 3x+4y=2.

Formula used:

For any real numbers a, b, and c, the general solution of a linear equation of the form ax+by=c, when parameterized by x has the form (x,caxb) and, when parameterized by y has the form (cbya,y).

For any real numbers a, b, and c, the particular solution of a linear equation of the form ax+by=c is obtained by selecting specific values for x and y which satisfies the equation.

Calculation:

Consider the provided equation,

3x+4y=2

To find the general solution of the equation when parameterized by x, express y as a function of x.

3x+4y=24y=23xy=23x4

Substitute this expression of y in the solution (x,y). Hence the general solution of the equation 3x+4y=2 when parameterized by x is (x,23x4).

To find the general solution of the equation when parameterized by y, express x as a function of y.

3x+4y=23x=24yx=24y3

Substitute this expression of x in the solution (x,y). Hence the general solution of the equation 3x+4y=2 when parameterized by y is (24y3,y).

The particular solution of a linear equation is obtained by selecting specific values for x and y which satisfies the equation 3x+4y=2

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-4.1 P-11ESect-4.1 P-12ESect-4.1 P-13ESect-4.1 P-14ESect-4.1 P-15ESect-4.1 P-16ESect-4.1 P-17ESect-4.1 P-18ESect-4.1 P-19ESect-4.1 P-20ESect-4.1 P-21ESect-4.1 P-22ESect-4.1 P-23ESect-4.1 P-24ESect-4.1 P-25ESect-4.1 P-26ESect-4.1 P-27ESect-4.1 P-28ESect-4.1 P-29ESect-4.1 P-30ESect-4.1 P-31ESect-4.1 P-32ESect-4.1 P-33ESect-4.1 P-34ESect-4.1 P-35ESect-4.1 P-36ESect-4.1 P-37ESect-4.1 P-38ESect-4.1 P-39ESect-4.1 P-40ESect-4.1 P-41ESect-4.1 P-42ESect-4.1 P-43ESect-4.1 P-44ESect-4.1 P-45ESect-4.1 P-46ESect-4.1 P-47ESect-4.1 P-48ESect-4.1 P-49ESect-4.1 P-50ESect-4.1 P-51ESect-4.1 P-52ESect-4.1 P-53ESect-4.1 P-54ESect-4.1 P-55ESect-4.1 P-56ESect-4.1 P-57ESect-4.1 P-58ESect-4.1 P-59ESect-4.1 P-60ESect-4.1 P-61ESect-4.1 P-62ESect-4.1 P-63ESect-4.1 P-64ESect-4.1 P-65ESect-4.1 P-66ESect-4.1 P-67ESect-4.1 P-68ESect-4.1 P-69ESect-4.1 P-70ESect-4.1 P-71ESect-4.1 P-72ESect-4.1 P-73ESect-4.1 P-74ESect-4.1 P-75ESect-4.1 P-76ESect-4.1 P-77ESect-4.1 P-78ESect-4.1 P-79ESect-4.1 P-80ESect-4.1 P-81ESect-4.1 P-82ESect-4.2 P-1ESect-4.2 P-2ESect-4.2 P-3ESect-4.2 P-4ESect-4.2 P-5ESect-4.2 P-6ESect-4.2 P-7ESect-4.2 P-8ESect-4.2 P-9ESect-4.2 P-10ESect-4.2 P-11ESect-4.2 P-12ESect-4.2 P-13ESect-4.2 P-14ESect-4.2 P-15ESect-4.2 P-16ESect-4.2 P-17ESect-4.2 P-18ESect-4.2 P-19ESect-4.2 P-20ESect-4.2 P-21ESect-4.2 P-22ESect-4.2 P-23ESect-4.2 P-24ESect-4.2 P-25ESect-4.2 P-26ESect-4.2 P-27ESect-4.2 P-28ESect-4.2 P-29ESect-4.2 P-30ESect-4.2 P-31ESect-4.2 P-32ESect-4.2 P-33ESect-4.2 P-34ESect-4.2 P-35ESect-4.2 P-36ESect-4.2 P-37ESect-4.2 P-38ESect-4.2 P-39ESect-4.2 P-40ESect-4.2 P-41ESect-4.2 P-42ESect-4.2 P-43ESect-4.2 P-44ESect-4.2 P-45ESect-4.2 P-46ESect-4.2 P-47ESect-4.2 P-48ESect-4.2 P-49ESect-4.2 P-50ESect-4.2 P-51ESect-4.2 P-52ESect-4.2 P-53ESect-4.2 P-54ESect-4.2 P-55ESect-4.2 P-56ESect-4.2 P-57ESect-4.2 P-58ESect-4.2 P-59ESect-4.2 P-60ESect-4.2 P-61ESect-4.2 P-62ESect-4.2 P-63ESect-4.2 P-64ESect-4.2 P-65ESect-4.2 P-66ESect-4.2 P-67ESect-4.2 P-68ESect-4.3 P-1ESect-4.3 P-2ESect-4.3 P-3ESect-4.3 P-4ESect-4.3 P-5ESect-4.3 P-6ESect-4.3 P-7ESect-4.3 P-8ESect-4.3 P-9ESect-4.3 P-10ESect-4.3 P-11ESect-4.3 P-12ESect-4.3 P-13ESect-4.3 P-14ESect-4.3 P-15ESect-4.3 P-16ESect-4.3 P-17ESect-4.3 P-18ESect-4.3 P-19ESect-4.3 P-20ESect-4.3 P-21ESect-4.3 P-22ESect-4.3 P-23ESect-4.3 P-24ESect-4.3 P-25ESect-4.3 P-26ESect-4.3 P-27ESect-4.3 P-28ESect-4.3 P-29ESect-4.3 P-30ESect-4.3 P-31ESect-4.3 P-32ESect-4.3 P-33ESect-4.3 P-34ESect-4.3 P-35ESect-4.3 P-36ESect-4.3 P-37ESect-4.3 P-38ESect-4.3 P-39ESect-4.3 P-40ESect-4.3 P-41ESect-4.3 P-42ESect-4.3 P-43ESect-4.3 P-44ESect-4.3 P-45ESect-4.3 P-46ESect-4.3 P-47ESect-4.3 P-48ESect-4.3 P-49ESect-4.3 P-50ESect-4.3 P-51ESect-4.3 P-52ESect-4.3 P-53ESect-4.3 P-54ESect-4.3 P-55ESect-4.3 P-56ESect-4.3 P-57ESect-4.3 P-58ECh-4 P-1RECh-4 P-2RECh-4 P-3RECh-4 P-4RECh-4 P-5RECh-4 P-6RECh-4 P-7RECh-4 P-8RECh-4 P-9RECh-4 P-10RECh-4 P-11RECh-4 P-12RECh-4 P-13RECh-4 P-14RECh-4 P-15RECh-4 P-16RECh-4 P-17RECh-4 P-18RECh-4 P-19RECh-4 P-20RECh-4 P-21RECh-4 P-22RECh-4 P-23RECh-4 P-24RECh-4 P-25RECh-4 P-26RECh-4 P-27RECh-4 P-28RECh-4 P-29RECh-4 P-30RECh-4 P-31RECh-4 P-32RECh-4 P-33RECh-4 P-34RECh-4 P-35RECh-4 P-36RECh-4 P-37RECh-4 P-38RECh-4 P-39RECh-4 P-40RECh-4 P-41RECh-4 P-42RECh-4 P-43RECh-4 P-44RECh-4 P-45RECh-4 P-46RE

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Use the guidelines of this section to sketch the curve. y = 2x tan x, /2 x /2

Single Variable Calculus: Early Transcendentals, Volume I

ENCLOSING AN AREA Juanita wishes to have a rectangular garden in her backyard with an area of 250 ft2. Letting ...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Fill in each blank: 1m3=L

Elementary Technical Mathematics

Finding a Derivative In Exercises 133-148, find the derivative of the function. f(x)=4x

Calculus: Early Transcendental Functions (MindTap Course List)

The first point determined by Euler’s method for , y(11) = 2 with step size 0.5 is: (11.0, 3.5) (11.5, 3.5) (11...

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

j × (−k) = i −i j + k −j − k

Study Guide for Stewart's Multivariable Calculus, 8th