BuyFindarrow_forward

Finite Mathematics and Applied Cal...

7th Edition
Stefan Waner + 1 other
ISBN: 9781337274203

Solutions

Chapter
Section
BuyFindarrow_forward

Finite Mathematics and Applied Cal...

7th Edition
Stefan Waner + 1 other
ISBN: 9781337274203
Textbook Problem

In Exercises 1-42, use Gauss-Jordan row reduction to solve the given systems of equation. We suggest doing some by hand and others using technology. [HINT: See Examples 1-6.]

x + y = 1

3 x y = 0

x 3 y = 2

To determine

To calculate: The solution of the system of equations x+y=1,3xy=0,x3y=2 by the use of Gauss Jordan row reduction.

Explanation

Given Information:

The system of equation is,

x+y=13xy=0x3y=2

Formula Used:

Elementary row operations:

Type 1: Replacing the row Ri by aRi, where a is a nonzero number.

Type 2: Replacing the row Ri by aRi±bRj, where a is a nonzero number.

Gauss Jordan reduction method:

Step 1: First, clear the fractions or decimals by using type 1 operation.

Step 2: Select the first nonzero element of the first row as pivot element.

Step 3: Use the pivot to clear its column using type 2 operation.

Step 4: Select the first nonzero element in the second row a pivot and clear its column.

Step 5: Turn all the selected pivot elements into a 1 using operations of type 1.

Calculation:

Consider the system of equation,

x+y=13xy=0x3y=2

The augmented matrix for the system of equations is,

[111311302]

Apply Gauss Jordan reduction method to get the solution of the given system of equation.

Begin by the selection of the first nonzero element of first row and clearing its column.

Perform the operations R2R23R1 and R3R3R1,

[111311302][111004433]

Next, pivot the first nonzero element of the second row and clear its column

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-4.1 P-11ESect-4.1 P-12ESect-4.1 P-13ESect-4.1 P-14ESect-4.1 P-15ESect-4.1 P-16ESect-4.1 P-17ESect-4.1 P-18ESect-4.1 P-19ESect-4.1 P-20ESect-4.1 P-21ESect-4.1 P-22ESect-4.1 P-23ESect-4.1 P-24ESect-4.1 P-25ESect-4.1 P-26ESect-4.1 P-27ESect-4.1 P-28ESect-4.1 P-29ESect-4.1 P-30ESect-4.1 P-31ESect-4.1 P-32ESect-4.1 P-33ESect-4.1 P-34ESect-4.1 P-35ESect-4.1 P-36ESect-4.1 P-37ESect-4.1 P-38ESect-4.1 P-39ESect-4.1 P-40ESect-4.1 P-41ESect-4.1 P-42ESect-4.1 P-43ESect-4.1 P-44ESect-4.1 P-45ESect-4.1 P-46ESect-4.1 P-47ESect-4.1 P-48ESect-4.1 P-49ESect-4.1 P-50ESect-4.1 P-51ESect-4.1 P-52ESect-4.1 P-53ESect-4.1 P-54ESect-4.1 P-55ESect-4.1 P-56ESect-4.1 P-57ESect-4.1 P-58ESect-4.1 P-59ESect-4.1 P-60ESect-4.1 P-61ESect-4.1 P-62ESect-4.1 P-63ESect-4.1 P-64ESect-4.1 P-65ESect-4.1 P-66ESect-4.1 P-67ESect-4.1 P-68ESect-4.1 P-69ESect-4.1 P-70ESect-4.1 P-71ESect-4.1 P-72ESect-4.1 P-73ESect-4.1 P-74ESect-4.1 P-75ESect-4.1 P-76ESect-4.1 P-77ESect-4.1 P-78ESect-4.1 P-79ESect-4.1 P-80ESect-4.1 P-81ESect-4.1 P-82ESect-4.2 P-1ESect-4.2 P-2ESect-4.2 P-3ESect-4.2 P-4ESect-4.2 P-5ESect-4.2 P-6ESect-4.2 P-7ESect-4.2 P-8ESect-4.2 P-9ESect-4.2 P-10ESect-4.2 P-11ESect-4.2 P-12ESect-4.2 P-13ESect-4.2 P-14ESect-4.2 P-15ESect-4.2 P-16ESect-4.2 P-17ESect-4.2 P-18ESect-4.2 P-19ESect-4.2 P-20ESect-4.2 P-21ESect-4.2 P-22ESect-4.2 P-23ESect-4.2 P-24ESect-4.2 P-25ESect-4.2 P-26ESect-4.2 P-27ESect-4.2 P-28ESect-4.2 P-29ESect-4.2 P-30ESect-4.2 P-31ESect-4.2 P-32ESect-4.2 P-33ESect-4.2 P-34ESect-4.2 P-35ESect-4.2 P-36ESect-4.2 P-37ESect-4.2 P-38ESect-4.2 P-39ESect-4.2 P-40ESect-4.2 P-41ESect-4.2 P-42ESect-4.2 P-43ESect-4.2 P-44ESect-4.2 P-45ESect-4.2 P-46ESect-4.2 P-47ESect-4.2 P-48ESect-4.2 P-49ESect-4.2 P-50ESect-4.2 P-51ESect-4.2 P-52ESect-4.2 P-53ESect-4.2 P-54ESect-4.2 P-55ESect-4.2 P-56ESect-4.2 P-57ESect-4.2 P-58ESect-4.2 P-59ESect-4.2 P-60ESect-4.2 P-61ESect-4.2 P-62ESect-4.2 P-63ESect-4.2 P-64ESect-4.2 P-65ESect-4.2 P-66ESect-4.2 P-67ESect-4.2 P-68ESect-4.3 P-1ESect-4.3 P-2ESect-4.3 P-3ESect-4.3 P-4ESect-4.3 P-5ESect-4.3 P-6ESect-4.3 P-7ESect-4.3 P-8ESect-4.3 P-9ESect-4.3 P-10ESect-4.3 P-11ESect-4.3 P-12ESect-4.3 P-13ESect-4.3 P-14ESect-4.3 P-15ESect-4.3 P-16ESect-4.3 P-17ESect-4.3 P-18ESect-4.3 P-19ESect-4.3 P-20ESect-4.3 P-21ESect-4.3 P-22ESect-4.3 P-23ESect-4.3 P-24ESect-4.3 P-25ESect-4.3 P-26ESect-4.3 P-27ESect-4.3 P-28ESect-4.3 P-29ESect-4.3 P-30ESect-4.3 P-31ESect-4.3 P-32ESect-4.3 P-33ESect-4.3 P-34ESect-4.3 P-35ESect-4.3 P-36ESect-4.3 P-37ESect-4.3 P-38ESect-4.3 P-39ESect-4.3 P-40ESect-4.3 P-41ESect-4.3 P-42ESect-4.3 P-43ESect-4.3 P-44ESect-4.3 P-45ESect-4.3 P-46ESect-4.3 P-47ESect-4.3 P-48ESect-4.3 P-49ESect-4.3 P-50ESect-4.3 P-51ESect-4.3 P-52ESect-4.3 P-53ESect-4.3 P-54ESect-4.3 P-55ESect-4.3 P-56ESect-4.3 P-57ESect-4.3 P-58ECh-4 P-1RECh-4 P-2RECh-4 P-3RECh-4 P-4RECh-4 P-5RECh-4 P-6RECh-4 P-7RECh-4 P-8RECh-4 P-9RECh-4 P-10RECh-4 P-11RECh-4 P-12RECh-4 P-13RECh-4 P-14RECh-4 P-15RECh-4 P-16RECh-4 P-17RECh-4 P-18RECh-4 P-19RECh-4 P-20RECh-4 P-21RECh-4 P-22RECh-4 P-23RECh-4 P-24RECh-4 P-25RECh-4 P-26RECh-4 P-27RECh-4 P-28RECh-4 P-29RECh-4 P-30RECh-4 P-31RECh-4 P-32RECh-4 P-33RECh-4 P-34RECh-4 P-35RECh-4 P-36RECh-4 P-37RECh-4 P-38RECh-4 P-39RECh-4 P-40RECh-4 P-41RECh-4 P-42RECh-4 P-43RECh-4 P-44RECh-4 P-45RECh-4 P-46RE

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Show that, for x 0, x1+x2tan1xx

Calculus: Early Transcendentals

For the following set of scores, find the value of each expression: a. X b. (X)2 c. X2 d. (X +3)

Essentials of Statistics for The Behavioral Sciences (MindTap Course List)

In Exercises 89-94, determine whether the statement is true or false. If it is true, explain why it is true. If...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

In Problems 19-26, use the simplex method or Excel. Assume that all variables are nonnegative.

Mathematical Applications for the Management, Life, and Social Sciences

Convert from degrees to radians. 6. 36

Single Variable Calculus: Early Transcendentals

The length of the curve given by x = 3t2 + 2, y = 2t3, is:

Study Guide for Stewart's Multivariable Calculus, 8th

True or False: f(x) = 3x x3 is concave down for x 1.

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

For Review Exercises 12 to 15 , find the values of x and y.

Elementary Geometry for College Students